Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B có nghiệm
=> B = 0
=> 2x4 - 8x2 = 0
=> 2x2(x2 - 4) = 0
=> \(\orbr{\begin{cases}2x^2=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy x \(\in\left\{0;2;-2\right\}\)là nghiệm của đa thức B
cho f(x) = 1/2x +4 =0
=> 1/2 x = 0-4
=> 1/2x = -4
=> x = -4 : 1/2
=> x= -8
vậy x=-8 là nghiệm của đa thức F(x)
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
Lời giải:
a.
\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)
\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)
b.
$C(x)=4x-1=0$
$\Rightarrow x=\frac{1}{4}$
Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$
c.
\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)
\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)
\(=4x^3-6x^2-6x+3\)
Mình giải giúp bạn nha:
a, \(x^2+3\times x-6\)
Có: \(x^2+3\times x-6=0\)
\(\Rightarrow x^2+2\times x\times\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2-6=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{33}{4}=0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{33}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{2}=\sqrt{\dfrac{33}{4}}\\x+\dfrac{3}{2}=-\sqrt{\dfrac{33}{4}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=\dfrac{-3+\sqrt{33}}{2}\\x=-\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=-\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy đa thức \(x^2-3x-6\) có nghiệm là \(x=\dfrac{-3+\sqrt{33}}{2};x=-\dfrac{3+\sqrt{33}}{2}\)
b, \(4\times x^2+8\times x-4\)
Cho: \(4\times x^2+8\times x-4=0\)
\(\Rightarrow\left(4\times x^2+8\times x-4\right)\times\dfrac{1}{4}=0\times\dfrac{1}{4}\)
\(4\times x^2-\dfrac{1}{4}+8\times x\times\dfrac{1}{4}-4\times\dfrac{1}{4}=0\)
\(x^2+2\times x-1=0\)
\(x^2+x+x-1=0\)
\(x\times\left(x+1\right)+\left(x+1\right)-2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=2\)
\(\Rightarrow\left(x+1\right)^2=2\)
\(\Rightarrow x+1=\pm\sqrt{2}\)
TH1: \(x+1=\sqrt{2}\Rightarrow x=\sqrt{2}-1\)
TH2: \(x+1=-\sqrt{2}\Rightarrow x=-\sqrt{2}-1\)
Vậy nghiệm của đa thức \(4\times x^2+8\times x-4\) là \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)
Đặt A(x)=0
=>-x(-2x+3)(1-x^3)=0
=>x(2x-3)(x^3-1)=0
=>x=0 hoặc 2x-3=0 hoặc x^3-1=0
=>x=0;x=3/2;x=1
a) Ta có: \(M=\left(\dfrac{1}{2}x^2y\right)\cdot\left(\dfrac{2}{3}xy\right)^2\)
\(=\dfrac{1}{2}x^2y\cdot\dfrac{4}{9}x^2y^2\)
\(=\dfrac{2}{9}x^4y^3\)
b) Hệ số là \(\dfrac{2}{9}\)
Phần biến là \(x^4;y^3\)
c) Bậc là 7
d) Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{2}{9}\cdot\left(-1\right)^4\cdot2^3=\dfrac{2}{9}\cdot8=\dfrac{16}{9}\)
M(x)=(2x-1)(x^2+3)=0
<=> (2x-1)=0 hoặc (x2+3)=0
<=> x=\(\frac{1}{2}\)hoặc x2=-3 (không tìm được x thỏa x2=-3)
Vậy PT có nghiệm x=\(\frac{1}{2}\)
Đặt \(M\left(x\right)=\left(2x-1\right)\left(x^2+3\right)=0\)
TH1 : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
TH2 : \(x^2=-3\)( vô lí )
Vậy tập nghiệm đa thức là S = { 1/2 }