K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

ai giúp mink với

 

28 tháng 2 2017

Bạn giở SGK Công nghệ 6

24 tháng 4 2016

- Quy trình cắm hoa gồm 3 bước:

+Lựa chọn hoa, lá, bình cắm hoa, dạng cắm hoa.

+ Cắt cành và cắm các cành chính, cắt các cành phụ có độ dài khác nhau, cắm cành, lá phụ.

+Đặt bình hoa vào vị trí cần trang trí.

- Trong quy trình cắm hoa, theo em, bước nào cũng quan trọng cả, vì muốn có một bình hoa đẹp thì phải làm theo từng bước.

- Vì chú ý bảo quản thực phẩm trong quá trình chế biến giúp hạn chế thực phẩm bị hư hỏng gây nên giảm giá trị dinh dưỡng vốn có mà còn gây bệnh hoặc ngộ độc, làm ảnh hưởng đến sức khỏe và tính mạng con người.

24 tháng 4 2016

- Các vitamin tan trong nước: vitamin B1; vitamin B2; vitamin B3 hoặc PP; vitamin B6; vitamin B5; vitamin C;....

- Các vitamin tan trong chất béo:vitamin D; vitamin A; vitamin E; vitamin K;...

- Các đặc điểm của một ngôi nhà thông minh:

+Tận dụng tối đa năng lượng và ánh sáng mặt trời, gió tự nhiên.

+Có hệ thống điều khiển tự động: ánh sáng, nhiệt độ, các thiết bị trong nhà, có hệ thống đảm bảo an toàn.

+Có hệ thống đảm bảo an ninh, an toàn cho ngôi nhà.

5 tháng 5 2016

oho mình cũg đang điên đầu vì mấy câu hỏi này.!!!??

 

9 tháng 1 2017

tự biết@hiha

15 tháng 4 2016

bạn yêu ơi mình ko biết có đúng ko mình cũng học vnen ở tp kon tum:

1.bạn cần rửa tay,vệ sinh nhà bếp .......

2.Việc chế biến món ăn đạt yêu cầu về chất lượng tạo cảm giác ngon miêng ên tâm giúp người ăn phòng tránh ngộ độc.

3.lựa chọ thịt lợn:mua thịt mới mổ phần nạc có màu hồng tươi cầm tay thấy thịt chắc phần nạc hơi dính

tạm biệt học tốt

27 tháng 4 2016

-Vì làm như vậy sẽ giự được thực phẩm lâu hơn,giúp cho thực phẩm đảm bảo vệ sinh và đảm bảo giá trị dinh dưỡng của thực phẩm .

-Trong nước:B,C,PP

Trong chât béo:A,D,E,K

-Có các biện pháp sau

+Lớp vỏ cám của gạo có nhìu vitamin nhóm B ,vì thế không nên sát gạo trắng quá và không vo gạo quá kĩ khi nấu cơm .

+Tính lượng nước vừa đủ khi nấu cơm để không phải chăt sbor bớt nước cơm ,hạn chế mất vitamin B1.

.......

-Cần

+Không nên rán quá lâu

+Không rán ở nhiệt độ quá cao

+Không nên đun nấu lâu.

....

-Cần

+Sơ chế thực phẩm thật sạch

+Nấu ở nhiệt độ quá cao sẽ làm thực phẩm bị biến đổi hoặc phá hủy.

+Bảo quản ở đúng nơi

+nấu xong nên ăn ngay ko dể hâm lại thức ăn nhìu lần

+Không đun ở nhiệt độ quá cao,tránh làm cháy thực phẩm,ảnh hưởng đến mùi,vị,mất chât dinh dưỡng và còn sản sinh chât độc

 

14 tháng 3 2017
Lựa chọn, bảo quản, chế biến thực phẩm nhằm giảm hao hụt chất dinh dưỡng Cập nhật ngày: 03/06/2015 10:23:54 | Lượt xem: 10559 Một chế độ dinh dưỡng tốt, đầy đủ không chỉ là chọn thực phẩm gì, món ăn gì hay số lượng thực phẩm mà còn phải được tính tới hàm lượng các chất dinh dưỡng được đưa vào trong cơ thể. Để đạt được điều đó, việc đảm bảo các chất dinh dưỡng trong thực phẩm đã chọn, trong món ăn đã nấu không bị hao hụt hoặc hao hụt ít nhất cần được quan tâm và tính toán. Điều này, đòi hỏi các bà nội trợ, các đầu bếp phải biết lựa chọn những thực phẩm an toàn, có ích cho sức khỏe, chế biến thành những món ăn lành mạnh, giữ gìn lượng chất dinh dưỡng trong món ăn, sao cho món ăn khi vào cơ thể được hấp thu tối đa dưỡng chất.

Ảnh minh họa chế biến thực phẩm
1. Lựa chọn thực phẩm:

Trước hết, phải bàn tới việc lựa chọn thực phẩm như thế nào, bảo quản như thế nào để đảm bảo không bị hao hụt chất dinh dưỡng vốn có trong thực phẩm. Việc lựa chọn thực phẩm phải chú ý tới tính tươi, ngon (thực phẩm tươi sống), đủ thành phần dinh dưỡng (thực phẩm qua chế biến), bên cạnh đó là tính an toàn, không nhiễm hóa chất, ít chất bảo quản. Có nhiều nhóm thực phẩm được tiêu thụ hàng ngày, tương ứng với mỗi nhóm thực phẩm có những cách lựa chọn phù hợp:

  • Nhóm ngũ cốc nguyên hạt như gạo tẻ, gạo nếp, đậu xanh, đậu đen và nhóm hạt cung cấp chất béo như lạc, vừng…: Hạt phải khô, không bị ẩm mốc, các hạt đều nhau, trong, không đục, màu sắc tự nhiên không bị biến đổi. Nếu cắn thử thấy hạt giòn, không vỡ vụn. Ngửi mùi có mùi thơm đặc trưng.
  • Nhóm thịt: thịt lợn, thịt gà, thịt bò…: Miếng thịt dẻo, thơm mùi đặc trưng, không hôi, không có mùi lạ, bề mặt miếng thịt không có lớp màng bao phủ, lấy ngón tay ấn sẽ thấy đàn hồi tốt và không chảy nước.
  • Nhóm cá, hải sản: vảy cá xếp đều, trắng, không bong tróc, không có các dấu hiệu bất thường. Mang cá khép chặt, nếu lấy tay nâng mang cá lên xem sẽ thấy mang cá màu hồng tươi mà không phải màu tía. Cá tươi thì mắt cá to, sáng trong, hơi lồi ra ngoài. Chất nhờn trên thân mình phải trong, nhớt và không có mùi lạ. Các hải sản nên mua khi chúng còn sống, không mua hải sản đã bị ôi .
  • Nhóm rau: Rau củ tươi là rau củ không héo, màu xanh hoặc màu đặc trưng mà không bị biến dạng. Cánh lá cứng cáp, không mềm, thân cây rau không có nhớt. Cuống lá rau phải còn xanh, cứng.
  • Nhóm quả: chọn quả không bị nứt, vỏ không thủng, quả không dập nát, lõi cành bên trong màu xanh, thơm mùi nhựa. Không chọn quả khô, héo, quắt, thâm dập chuyển màu. Nên chọn thực phẩm theo mùa.
  • Nhóm sữa và chế phẩm sữa như sữa tươi, sữa tiệt trùng, phomat…: cần chọn sản phẩm có ghi đầy đủ nhãn mác, hạn sử dụng. Sản phẩm màu đặc trưng, không chuyển màu, có mùi thơm của sữa.
  • Nhóm thực phẩm qua chế biến như giò, chả, thịt hun khói, đồ đông lạnh…: cần chọn sản phẩm có thương hiệu, cơ sở sản xuất uy tín, đầy đủ nhãn mác, thành phần dinh dưỡng, ngày sản xuất, hạn sử dụng.

2. Bảo quản và sơ chế thực phẩm

Các thực phẩm sau khi lựa chọn, mua về, cần chú ý tới việc bảo quản , nhất là các thực phẩm chưa được chế biến ngay. Việc bảo quản các thực phẩm đã chọn phù hợp với từng nhóm thực phẩm, điều này sẽ giúp cho việc giữ - không bị mất các chất dinh dưỡng của thực phẩm, đồng thời đảm bảo độ tươi, ngon khi chế biến món ăn. Đối với nhóm tươi sống như rau, quả thì cần bảo quản trong tủ lạnh ở ngăn mát. Đối với nhóm thịt, cá, hải sản, nếu chưa chế biến ngay, cần bảo quản trong tủ đông lạnh. Nhóm trứng, sữa cần để ngăn mát tủ lạnh hoặc nơi mát trong nhà, tránh ánh nắng trực tiếp. Nhóm ngũ cốc hạt cần để nơi thoáng, khô ráo, tránh ẩm.

Một số thực phẩm khi để đông lạnh, nhiệt độ thấp sẽ ức chế các enzym phá hủy chất dinh dưỡng và vitamin như rau, quả, trứng, sữa, do đó không nên để các thực phẩm này tại ngăn đông lạnh.

Tham khảo về nhiệt độ và thời hạn cần thiết để bảo quản một số loại thực phẩm

Thực phẩm

Nhiệt độ bảo quản (oC)

Thời gian lưu giữ sau khi mua

0-3

3 ngày

Cua, tôm, sò

0-3

2 ngày

Thịt các loại

0-3

3-5 ngày

Thịt xay

0-3

2-3 ngày

Thịt đã được chế biến

0-3

2-3 tuần

Gia cầm

0-3

3 ngày

Nước trái cây

0-7

1-2 tuần

Sữa tươi

1-7

5-7 ngày

Kem

1-7

5-7 ngày

Phô mai

0-7

thường 1-3 tháng

0-7

8 tuần

Dầu, mỡ

2-7

6 tháng

Bơ thực vật (margarine)

2-7

6 tháng

Thịt để ngăn lạnh

0-3

Không dùng khi quá hạn

Thức ăn thừa

0-3

3-5 ngày

(trích từ tài liệu của Viện Quốc tế về Đồ ướp lạnh, 1986)

Việc sơ chế các thực phẩm cũng cần được lưu ý trong quá trình chế biến thực phẩm. Việc sơ chế không đúng cách, không phù hợp với đặc điểm thực phẩm cũng sẽ làm mất đi chất dinh dưỡng và thay đổi đặc tính thực phẩm. Đối với nhóm rau, nên rửa rau củ dưới vòi nước chảy, không nên ngâm ngập rau quả trong chậu nước, như vậy sẽ tránh được việc các vitamin B, C và một số khoáng chất hòa tan vào trong nước. Đối với nhóm quả, sau khi rửa bằng nước sạch, không nên gọt quá sâu phần vỏ, vì các chất dinh dưỡng và một số hoạt chất sinh học tốt cho cơ thể có nhiều ở ngay lớp vỏ. Đối với nhóm thịt cá tươi, cần rửa sạch dưới vòi nước, không ngâm lâu tránh thực phẩm bị trương, rữa. Nếu cần phải rã đông thực phẩm đông lạnh, nên để rã đông tự nhiên ở nhiệt độ phòng để đảm bảo giữ lại chất dinh dưỡng. Lưu ý, tất cả các nhóm thực phẩm tươi, sống cần phải được nấu ngay, ăn ngay sau khi sơ chế. Sơ chế xong, để thời gian quá lâu cũng sẽ làm mất các chất dinh dưỡng, như rau quả thái nhỏ để lâu sẽ làm mất vitamin C, beta-caroten….

3. Chế biến thực phẩm

Các nhà khoa học đã nghiên cứu và đánh giá về khả năng giữ được các chất dinh dưỡng qua cách chế biến món ăn. Trong số các cách chế biến món ăn, thì cách ăn tươi sống hoặc hấp được cho là tốt hơn cả vì giữ được nhiều chất dinh dưỡng của thực phẩm, trong khi cách chế biến theo kiểu luộc/hầm, nướng/rang, rán/chiên lại làm mất chất dinh dưỡng.

  • Ăn sống, trộn salad: đây được xem là cách ăn giữ được nguyên giá trị các chất dinh dưỡng có trong thực phẩm. Những món ăn này chỉ áp dụng với những thực phẩm đảm bảo vệ sinh an toàn thực phẩm, những thực phẩm thực sự tươi ngon. Tuy nhiên, cần chú ý chỉ sơ chế đồ ăn sống ngay trước khi ăn, tránh để quá lâu mà mất chất dinh dưỡng.
  • Hấp: Đây cũng được coi là một trong những cách giữ được nhiều chất dinh dưỡng của thức ăn. Cần đảm bảo đủ nhiệt và đủ thời gian cho thực phẩm chín vừa, không để quá lâu sẽ làm mất các chất dinh dưỡng khi đun ở nhiệt độ cao. Cần ăn ngay khi các món ăn vừa nấu xong.
  • Luộc và hầm: Thực phẩm chế biến theo cách này thường bị mất nhiều chất dinh dưỡng. Nước sẽ hòa tan vitamin (đặc biệt là vitamin B, vitamin C) và một số khoáng chất. Để hạn chế mất chất, bạn nên giới hạn lượng nước, thời gian khi luộc (hầm) và nhiệt độ khi đun. Nên sử dụng cả nước luộc/hầm để ăn hoặc tận dụng để chế biến thành món ăn khác. Nên dùng nồi áp suất để hầm, vì đây cũng là cách ít bị mất dinh dưỡng nhất nếu chỉ dùng ít nước.
  • Nướng và rang: Đây là hai phương pháp dùng nhiệt độ để làm khô và chín thực phẩm. Để hạn chế sự mất chất dinh dưỡng nên sử dụng nướng thực phẩm với lò nướng chuyên dụng.
  • Rán/chiên: các thực phẩm khi chiên/rán ở nhiệt độ cao thường bị mất chất dinh dưỡng, bên cạnh đó nếu chiên/rán không đúng cách có thể sinh ra những độc tố, không có lợi cho sức khỏe.

Đối với chế biến thực phẩm, có 3 qui tắc giúp thực phẩm hạn chế bị hao hụt chất dinh dưỡng trong quá trình chế biến:

  • Giảm lượng nước sử dụng trong nấu ăn: trong các cách chế biến thì hấp tốt hơn luộc, nướng tốt hơn rán.
  • Giảm thời gian nấu ăn: do nhiều vitamin rất nhạy cảm với nhiệt, dễ bị phá hủy trong quá trình nấu, nên cần lưu ý thời gian nấu để tránh thất thoát chất dinh dưỡng. Ví dụ có thể đậy vung khi đun nấu để giúp thực phẩm chín nhanh, giảm thời gian thực phẩm bị tiếp xúc quá lâu với nhiệt.
  • Giảm diện tích bề mặt của thực phẩm đó được tiếp xúc với không khí: nên cắt rau củ thành miếng to để làm giảm diện tích bề mặt tiếp xúc với không khí, từ đó giữ được nhiều dinh dưỡng hơn. Nên nghiền và xay nhỏ thức ăn sau khi đã nấu chín, không nên nghiền xay trước khi nấu.

Đối với mỗi loại thực phẩm, nếu biết cách lựa chọn cách chế biến phù hợp sẽ làm giảm tối thiểu lượng các chất dinh dưỡng bị hao hụt của thực phẩm và hạn chế tạo ra các chất bất lợi cho sức khỏe:

  • Đối với chất đạm (protein): Khi nướng, rán các loại thực phẩm giàu protein như thịt, cá, trứng, sữa ở nhiệt độ cao quá lâu, giá trị dinh dưỡng của protein giảm đi vì chúng tạo thành các liên kết khó tiêu. Do đó với các thực phẩm giàu chất đạm như thịt, cá, trứng đều phải sử dụng nhiệt độ trên 70oC, tốt nhất là 100oC để nấu chín và diệt khuẩn.
  • Đối với chất béo (lipid): Khi đun lâu ở nhiệt độ cao, các axit béo không no sẽ bị ôxy hóa làm mất tác dụng dinh dưỡng. Mặt khác, các liên kết kép trong cấu trúc của các axit béo này bị bẻ gãy tạo thành các sản phẩm trung gian như peroxit aldehyt, aldehyt rất có hại đối với cơ thể. Tránh sử dụng lại dầu, mỡ đã qua chiên rán ở nhiệt độ cao.
  • Đối với nhóm vitamin: Về cơ bản, các vitamin bị tác động bởi nhiệt, còn các khoáng chất không bị tác động bởi nhiệt. Đối với nhóm vitamin (gồm vitamin tan trong nước và vitamin tan trong dầu) thì giữa thực phẩm sống và thực phẩm sau chế biến thì có hàm lượng thường không giống nhau, do nhóm vitamin thường bị hao hụt bởi nhiệt, không khí, nước, chất béo. Một số nghiên cứu cho thấy lượng vitamin mất do quá trình nấu nướng: vitamin C mất 50%; vitamin B1 mất 30%; caroten mất 20%.
  • Đối với nhóm khoáng chất: Các chất khoáng (canxi, phospho, kali, magiê...) trong quá trình nấu có các biến đổi về số lượng do chúng hòa tan vào nước. Vì vậy, khi ăn, nên ăn cả cái lẫn nước mới tốt cho sức khỏe.

Tham khảo về yếu tố ảnh hưởng tới sự thay đổi hàm lượng vitamin trong quá trình chế biến:

Vitamin

Nhiệt độ

Không khí

Nước

Chất béo

Vitamin A

x

x

x

Vitamin D

x

Vitamin E

x

x

x

Vitamin C

x

x

x

Vitamin B1

x

x

Vitamin B2

x

Vitamin B6

x

x

x

Folate

x

x

Vitamin B12

x

x

Biotin

x

Pantothenic acid

x

(trích từ tài liệu “American Dietetic Association Complete Food and Nutrition Guide”, 2012)

Tóm lại, thực phẩm là nguồn cung cấp các chất dinh dưỡng cho cơ thể nhưng nếu thực phẩm không đảm bảo vệ sinh an toàn thì lại có thể là nguồn gây bệnh; thực phẩm không biết cách lực chọn, bảo quản, chế biến thì có thể đã bị hao hụt chất dinh dưỡng, không còn chất dinh dưỡng. Việc chọn lựa, bảo quản, chế biến thực phẩm đảm bảo an toàn vệ sinh và đảm bảo không bị hao hụt chất dinh dưỡng là một trong những biện pháp nâng cao chất lượng bữa ăn, nhằm hỗ trợ giảm mắc các bệnh, cải thiện sức khỏe

*Isaac Newton Jr.Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.Luận...
Đọc tiếp

*Isaac Newton Jr.

Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.

Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.

Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.

Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.

Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]

Sự nghiệp

📷Newton năm 1702, vẽ bởi Godfrey Kneller

Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.

Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.

Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathematica.

Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.

Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathematica như sau:

Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.

Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.

Các tính chất của vật chất là như nhau trong toàn vũ trụ.

Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.

Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opticks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":

Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.

Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.

Theo quyển Opticks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.

Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opticks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.

Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathematica phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.

Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.

Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]

Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.

Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:

Nature and nature's laws lay hid in night;God said "Let Newton be" and all was light.Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ;Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa.

Tiểu sử

📷Quyển Philosophiae Naturalis Principia Mathematica của Newton📷Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)

Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.

Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elementscủa Euclid, Clavis Mathematica của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.

Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.

📷Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill

Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathematica. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.

Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.

Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.

Nghiên cứu khoa học

Quang học

📷Quyển Opticks của Newton📷Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton

Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.

Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.

📷Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672

Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.

Quả táo Newton

📷Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch.

Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.

Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.

Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]

Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?

Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?

Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.

John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:

Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.

Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."

Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".

Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.

Tác phẩm

Xuất bản khi sinh thời

De analysi per aequationes numero terminorum infinitas (1669, published 1711)

Method of Fluxions (1671)

Of Natures Obvious Laws & Processes in Vegetation (unpublished, c. 1671–75)[8]

De motu corporum in gyrum (1684)

Philosophiæ Naturalis Principia Mathematica (1687)

Opticks (1704)

Reports as Master of the Mint (1701–25)

Arithmetica Universalis (1707)

Xuất bản sau khi qua đời

The System of the World (1728)

Optical Lectures (1728)

The Chronology of Ancient Kingdoms Amended (1728)

De mundi systemate (1728)

Observations on Daniel and The Apocalypse of St. John (1733)

Newton, Isaac (1991). Robinson, Arthur B., biên tập. Observations upon the Prophecies of Daniel, and the Apocalypse of St. John. Cave Junction, Oregon: Oregon Institute of Science and Medicine. ISBN 0-942487-02-8. (A facsimile edition of the 1733 work.)

An Historical Account of Two Notable Corruptions of Scripture (1754)

0
*Isaac Newton Jr. Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.Luận...
Đọc tiếp

*Isaac Newton Jr.

Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.

Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.

Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.

Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.

Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]

Sự nghiệp

📷Newton năm 1702, vẽ bởi Godfrey Kneller

Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.

Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.

Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathematica.

Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.

Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathematica như sau:

Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.

Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.

Các tính chất của vật chất là như nhau trong toàn vũ trụ.

Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.

Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opticks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":

Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.

Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.

Theo quyển Opticks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.

Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opticks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.

Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathematica phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.

Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.

Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]

Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.

Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:

Nature and nature's laws lay hid in night;God said "Let Newton be" and all was light.Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ;Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa.

Tiểu sử

📷Quyển Philosophiae Naturalis Principia Mathematica của Newton📷Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)

Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.

Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elements của Euclid, Clavis Mathematica của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.

Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.

📷Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill

Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathematica. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.

Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.

Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.

Nghiên cứu khoa học

Quang học

📷Quyển Opticks của Newton📷Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton

Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.

Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.

📷Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672

Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.

Quả táo Newton

📷Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch.

Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.

Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.

Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]

Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?

Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?

Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.

John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:

Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.

Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."

Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".

Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.

Tác phẩm

Xuất bản khi sinh thời

De analysi per aequationes numero terminorum infinitas (1669, published 1711)

Method of Fluxions (1671)

Of Natures Obvious Laws & Processes in Vegetation (unpublished, c. 1671–75)[8]

De motu corporum in gyrum (1684)

Philosophiæ Naturalis Principia Mathematica (1687)

Opticks (1704)

Reports as Master of the Mint (1701–25)

Arithmetica Universalis (1707)

Xuất bản sau khi qua đời

The System of the World (1728)

Optical Lectures (1728)

The Chronology of Ancient Kingdoms Amended (1728)

De mundi systemate (1728)

Observations on Daniel and The Apocalypse of St. John (1733)

Newton, Isaac (1991). Robinson, Arthur B., biên tập. Observations upon the Prophecies of Daniel, and the Apocalypse of St. John. Cave Junction, Oregon: Oregon Institute of Science and Medicine. ISBN 0-942487-02-8. (A facsimile edition of the 1733 work.)

An Historical Account of Two Notable Corruptions of Scripture (1754)

0
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Tyrannosaurus ( /tɪˌrænəˈsɔrəs/ hay /taɪˌrænəˈsɔrəs/ có nghĩa là thằn lằn bạo chúa, được lấy từ tiếng Hy Lạp "tyrannos" (τύραννος) nghĩa là "bạo chúa", và "sauros" (σαῦρος) nghĩa là "thằn lằn"[1]), còn được gọi là Khủng long bạo chúa trong văn hóa đại chúng, là một chi khủng long chân thú sống vào cuối kỷ Phấn Trắng. Chi này chỉ gồm một loài duy nhất là Tyrannosaurus rex (thường...
Đọc tiếp

Tyrannosaurus ( /tɪˌrænəˈsɔrəs/ hay /taɪˌrænəˈsɔrəs/ có nghĩa là thằn lằn bạo chúa, được lấy từ tiếng Hy Lạp "tyrannos" (τύραννος) nghĩa là "bạo chúa", và "sauros" (σαῦρος) nghĩa là "thằn lằn"[1]), còn được gọi là Khủng long bạo chúa trong văn hóa đại chúng, là một chi khủng long chân thú sống vào cuối kỷ Phấn Trắng. Chi này chỉ gồm một loài duy nhất là Tyrannosaurus rex (thường rút gọn là T. rex). Chúng sinh sống ở nơi ngày nay là phía Tây của Bắc Mĩ, khi đó là một lục địa đảo, tên là Laramidia. Hóa thạch của Tyrannosaurus được tìm thấy trong các thành hệ địa chất có niên đại tầng Maastricht, khoảng 67-65,5 triệu năm về trước,[2] và là một trong những loài khủng long cuối cùng tồn tại trước sự tuyệt chủng kỷ Creta-phân đại đệ Tam.

Như các loài bạo long (Tyrannosauridae) khác, Tyrannosaurus rex là loài ăn thịt đi bằng hai chân, với một hộp sọ lớn và giữ thăng bằng bởi cái đuôi dài, nặng. So với hai chi sau to khỏe, chi trước của Tyrannosaurus thì ngắn nhưng đậc biệt mạnh so với kích thước của nó và có hai ngón có móng vuốt. Mặc dù bị nhiều loài khác vượt qua về kích thước, Tyrannosaurus rexvẫn là bạo long lớn nhất và một trong số những động vật ăn thịt lớn nhất mọi thời đại. Mẫu vật hoàn chỉnh nhất dài 12,3 m (40 ft)[3], cao 4 mét (13 ft) tới hông[4] (13 feet) và nặng 6,8 tấn (7,5 tấn thiếu)[5]. Là động vật ăn thịt lớn nhất trong khu vực của nó, Tyrannosaurus rex là một động vật ăn thịt đầu bảng, săn khủng long mỏ vịt, khủng long mặt sừng, khủng long bọc giáp và có thể cả khủng long chân thằn lằn,[6] mặc dù vài nhà khoa học xem loài này ăn xác thối. Việc Tyrannosaurus ăn thịt hay xác thối là một trong những chủ đề gây tranh cãi nhiều nhất trong giới cổ sinh vật học; tuy nhiên, hiện nay hầu hết đều đồng ý rằng Tyrannosaurus rex là loài săn mồi cơ hội, thực hiện cả ăn thịt và xác thối.[7] Nó một trong số động vật trên cạn có lực cắn lớn nhất.[8][9]

Hơn 50 mẫu vật Tyrannosaurus rex đã được phát hiện, một vài có bộ xương gần như hoàn chỉnh. Mô mềm và protein đã xuất hiện trong ít nhất một mẫu vật. Thói quen săn mồi, sinh lý học và tốc độ Tyrannosaurus rex là một vài chủ đề tranh cãi. Việc phân loại cũng bị tranh luận, vài nhà khoa học xemTarbosaurus bataar từ châu Á là một loài Tyrannosaurus và số khác vẫn cho rằng Tarbosaurus là một chi riêng. Nhiều chi Tyrannosauridae Bắc Mỹ cũng đồng nghĩa với Tyrannosaurus.

Vì là loài khủng long chân thú điển hình, Tyrannosaurus là một trong những loài khủng long nổi tiếng nhất kể từ thế kỷ 20, và đã được giới thiệu trong nhiều bộ phim, quảng cáo và tem bưu chính, cũng như nhiều loại phương tiện truyền thông khác.

31
31 tháng 8 2019

😀 😀 😀 😀 😀 😀

31 tháng 8 2019

o

Một số kinh nghiệm học văn*Tôi tự hỏi: "sao có nhiều em học sinh tham gia nhiều nhóm văn 1 lượt như vậy?"- tôi tự trả lời: chắc các em muốn được học hỏi, trao dồi kinh nghiệm-----> thực tế: tham gia cho có, nhóm nào cũng tham gia mà ko học gì, không thể hiện được trách nhiệm của 1 thành viên$$Ngoài ra là các câu hỏi của các em khác:* Câu hỏi: anh(chị) ơi có làm sao để học tốt văn bây...
Đọc tiếp

Một số kinh nghiệm học văn

*Tôi tự hỏi: "sao có nhiều em học sinh tham gia nhiều nhóm văn 1 lượt như vậy?"
- tôi tự trả lời: chắc các em muốn được học hỏi, trao dồi kinh nghiệm
-----> thực tế: tham gia cho có, nhóm nào cũng tham gia mà ko học gì, không thể hiện được trách nhiệm của 1 thành viên
$$Ngoài ra là các câu hỏi của các em khác:
* Câu hỏi: anh(chị) ơi có làm sao để học tốt văn bây giờ em sợ quá? Làm sao để viết dài ạ?
- trả lời:
+ muốn học tốt thì phải hiểu nó, học là cả 1 quá trình, văn vốn ko khó do chúng ta chưa có cách học đúng đắn. Có 1 phương pháp học thích hợp ắt hẳn sẽ tiến bộ và có kết quả tốt. Nắm nội dung cốt lõi và cách làm thì sẽ ổn thôi
+ Muốn viết dài thì hãy bình tĩnh xác định đề có bao nhiêu yêu cầu phân tích từng yêu cầu, dẫn chứng và mở rộng vấn đề, nhận định nội dung và nghệ thuật,...... Làm theo cấu trúc từng phần 1 thì bài sẽ dài thôi ko cần lo
* Câu hỏi: " Làm cách nào để học nhanh mà nhớ lâu?"
- trả lời: chỉ có học chắc nhớ lâu thôi em à. Nếu các em có trách nhiệm với việc học thì chỉ cần em học mỗi ngày một ích mà hiệu quả thì nhiều ngày em có cả 1 kho kiến thức rồi. Vì vậy, thay vì lo sợ tìm kím cách học như thế nào để học thì hãy có ý thức mà học tập một cách nghiêm túc
* Câu hỏi: " học nhứ thế nào ạ và cả viết như thế nào nữa em không biết?"
- trả lời: câu hỏi này chứng tỏ 2 điều giáo viên em dạy như thế nào mà em không hiểu, không biết, không làm được. Thứ 2 em học hành như thế nào đó. Từ đó giờ sao em không hỏi không tìm hiểu để gần thi ms chạy tán loạn hỏi hết người này đến người kia
✓✓✓ KẾT LUẬN: Các em biết không: "Học tập là một quá trình dài vì vậy hãy tích lũy từ từ và muốn biết thì hỏi, muốn giỏi phải học"?

Nguồn: sưu tầm

background Layer 1

Layer 1 background

0