Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(Q=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{2\sqrt{x}-9-\left(x-9\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(Q=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{2\sqrt{x}-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(Q=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
1.
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)
b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)
c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)
2.
a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}
b) ĐK:x\(\ge-3\)
\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)
Vậy S={-2}
3.
a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)
Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)
Vậy GTNN của A=\(\dfrac{3}{4}\)
a) đkxđ x≥0 , x ≠1
\(K=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
= \(\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)b)
\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\dfrac{1}{\sqrt{x}-2}\)
để K ∈ z thì \(\dfrac{-1}{\sqrt{x}-2}\) nguyên
=> √x -2 ∈ Ư(-1)={-1;1}
=> x ∈ {1; 9}
vậy ...
a: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b: Để K là số nguyên thì \(\sqrt{x}-2-1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
hay x=9
c: Để K là số âm thì \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
=>4<x<9
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
a) \(A=\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) P = \(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
= \(\left(\dfrac{-\sqrt{x}+\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\) = \(\dfrac{1}{\sqrt{x}+1}.\dfrac{\sqrt{x}-2}{1}\) = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
a) \(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)ư
=\(\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x +2\sqrt{x}-7-x+\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4}\)
=\(\dfrac{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
b)ta có : \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\dfrac{2}{\sqrt{x}-3}\)
để P nguyên thì \(\sqrt{x}-3\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-3\inƯ\left(\pm1,\pm2\right)\)
\(\Rightarrow\sqrt{x}-3=1\Leftrightarrow x=16\left(TM\right)\)
\(\sqrt{x}-3=-1\Leftrightarrow x=4\left(KTM\right)\)
\(\sqrt{x}-3=2\Leftrightarrow x=25\left(TM\right)\)
\(\sqrt{x}-3=-2\Leftrightarrow x=1\left(KTM\right)\)
vậy x\(\in\left\{16,25\right\}\)
1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)
\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))
\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)
\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)
Bài 1
a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a
b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3
Bài 2
a) √2x-3 = 7
⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26
c) √16x - √9x = 2
⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4
Bài 3
a) √(2-√5)2 = l 2-√5 l = √5-2
b) (a - 3)2 + (a - 9)
= a2 - 6a + 9 + a - 9 = a2 - 5a
c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\dfrac{-3\sqrt{x}+9}{x-9}\)
1.
\(a,Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(x+7\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)
\(b,Q\in Z\Leftrightarrow\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-2\right)-8}{\sqrt{x}-2}\in Z\\ \Leftrightarrow-1-\dfrac{8}{\sqrt{x}-2}\in Z\)
Mà \(-1\in Z\Leftrightarrow\dfrac{8}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow8⋮\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{-8,-4,-2,-1,1,2,4,8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;1;3;4;6;10\right\}\)
Mà \(x\in Z\) và \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;4\right\}\\ \Leftrightarrow x\in\left\{0;1;4\right\}\)
Vậy \(x\in\left\{0;1;4\right\}\) thì \(Q\in Z\)