Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
b, D = 2x^2-4x+3
D= 2(x^2-2x+1) +1
D= 2(x-1)^2+1 luôn lớn hơn hoặc bằng 1
V ậy giá trị nhỏ nhất của D =1 khi x=1
2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.
3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.
4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )
5) \(x^3=x\Leftrightarrow x=\pm1\)
Ta có:
2x^2 -x-6=0
2x^2 -4x+3x-6=0
=> 2x(x-2) + 3(x-2)=0
=> (x-2)(2x+3)=0
=> (x-2)=0 hoặc 2x+3=0
=> x=2 hoặc x=-3/2
4x^2 -3x-1 =0
=> 4x^2 -4x +x-1=0
=> 4x(x-1) + (x-1)=0
=> (x-1)(4x+1)=0
=> (x-1)=0 hoặc 4x+1=0
=> x=1 hoặc x= -1/4
5x^2 -16x+3=0
=> 5x^2 -15x -x+3=0
=> 5x(x-3) -(x-3)=0
=> (x-3)(5x-1)=0
=> x-3 =0 hoặc 5x-1=0
=> x=3 hoặc x=1/5
3)
x^3 + y^3 =(x+y)(x^2-xy+y^2)
(x+y)^2 =9
=> x^2 + 2xy +y^2 =9
=> x^2 + y^2= 5
=> x^3 + y^3 = 3(5-2)= 9
Câu 1: C