Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Được rồi, cách giải của bạn cũng đúng.
a. Chứng minh IK // DE và IK = DE
Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.
b. Chứng minh các tính chất yêu cầu
Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.
a: Xét ΔABC có
E,D lần lượt là trung điểm của AB và AC
nên ED là đường trung bình
=>ED//BC va ED=1/2BC(5)
Xét ΔGBC có
I,K lần lượt là trung điểm của GB và GC
nên IK là đường trung bình
=>IK//BC và IK=BC/2(6)
Từ(5) và (6) suy ra DE//IK và DE=IK
b: Xét ΔBED có MI//ED
nên MI/ED=BI/BD=1/3(1)
Xét ΔCED có KN//ED
nên KN/ED=CK/CE=1/3(2)
Từ (1) và (2) suy ra MI=KN
Xét ΔBPG có MI//PG
nên MI/PG=BI/BG=1/2(3)
Xét ΔCGQ có KN//QG
nên KN/GQ=CN/CQ=1/2(4)
Từ (3)và (4) suy ra PG=GQ
a/ Chứng minh rằng AK=KC,BI=ID
Vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác)
FE=(AB+CD)/2= (10+6)/2=8
IK= FE-EI-KF=8-3-3=2
a) Do \(AB//DC\Rightarrow AB//DM\) \(\Rightarrow\frac{AB}{DM}=\frac{AI}{IM}\)( Talet ) (1)
Tương tự ta có : \(\frac{AB}{CM}=\frac{BK}{KM}\) ( Talet ) (2)
Lại có : \(DM=CM\left(gt\right)\) nên từ (1) và (2)
\(\Rightarrow\frac{AI}{IM}=\frac{BK}{KM}\)
Xét \(\Delta ABM\) có \(\frac{AI}{IM}=\frac{BK}{KM}\) (cmt) , \(I\in AM,K\in BM\)
\(\Rightarrow IK//AB\) ( định lý Talet đảo )
b) Áp dụng định lý Talet lần lượt ta được :
+) \(EI//DM\Rightarrow\frac{EI}{DM}=\frac{AI}{AM}\) (3)
+) \(IK//MC\Rightarrow\frac{AI}{AM}=\frac{AK}{AC}=\frac{IK}{MC}\)(4)
+) \(KF//MC\Rightarrow\frac{BK}{BM}=\frac{KF}{MC}\) (5)
Mà : \(DM=CM\left(gt\right)\)
Nên tuqd (3) (4) và (5) \(\Rightarrow EI=IK=KF\) (đpcm)
a ) Hướng giải :
- Cần chứng minh tứ giác ABDM và tứ giác ABMC là hình bình hành.
- Suy ra KM // AD và IM // BC
- Áp dụng tính chất đường trung bình vào 2 tam giác ADC và DBC
- IK là đường trung bình của tam giác ABM
- IK // AB // DC
b ) Hướng giải ;
- Đầu tiên, cần chứng minh 4 điểm E, I, K, F thẳng hàng theo Tiên đề Ơ - clit
- Tiếp tục dùng tính chất đường trung bình vào các tam giác ADM, BMC
- Cuối cùng, EI = IK = KF \(\left(=\frac{DM}{2}=\frac{MC}{2}\right)\)
https://hoidap247.com/
có gì bạn vào đó tách từng bài ra và may thì sẽ có ng trả lời còn k may thì....