Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
\(a,3^{16}:3=3^{16-1}=3^{15}\)
\(b,3^6.3^4.3^2.3=3^{6+4+2+1}=3^{13}\)
\(c,\left(-\frac{1}{4}\right).\left(6\frac{2}{11}\right)+\left(3\frac{9}{11}\right).\left(-\frac{1}{4}\right)=\left(-\frac{1}{4}\right).\frac{68}{11}+\frac{42}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right)\left(\frac{68}{11}+\frac{42}{11}\right)\)
\(=\left(-\frac{1}{4}\right).10\)
\(=-\frac{10}{4}=-\frac{5}{2}\)
\(d,\left(-\frac{1}{2}\right)^3+\frac{1}{2}:5=\left(-\frac{1}{2}\right)\left(\left(\frac{1}{2}\right)^2-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\frac{1}{20}\)
\(=-\frac{1}{40}\)
\(g,1\frac{1}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}=\frac{26}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}\)
\(=\left(\frac{26}{25}-\frac{1}{25}\right)+\left(\frac{2}{21}+\frac{19}{21}\right)\)
\(=1+1\)
\(=2\)
\(3A=3^2+3^3+3^4+.....+3^{100}\)
\(2A=3A-A=3^2+3^3+3^4+.....+3^{100}-\left(3+3^2+3^3+.....+3^{99}\right)\)
\(2A=3^2+3^3+3^4+.....+3^{100}-3-3^2-3^3-.....-3^{99}\)
\(2A=3^{100}-3\)
Vậy \(2A+3=3^{100}-3+3=3^{100}\)là một lũy thừa của 3
\(A\left(x\right)=2x^2+2x+3\)
3) \(A\left(x\right)=3\)
khi đó: \(2x^2+2x+3=3\)
<=> \(x^2+x=0\)
<=> \(x\left(x+1\right)=0\)
<=> \(x=0\)
hoặc \(x=-1\)
A(x) = 3x2 + x3 + 5x4 - x2 - x3 - 5x4 + 2x + 3
= 2x2 + 2x + 3
A(x) + B(x) = 2x - 7
<=> ( 2x2 + 2x + 3 ) + B(x) = 2x - 7
B(x) = 2x - 7 - ( 2x2 + 2x + 3 )
= 2x - 7 - 2x2 - 2x - 3
= -2x2 - 10
A(x) = 3 <=> 2x2 + 2x + 3 = 3
<=> x( 2x + 2 ) = 0
<=> x = 0 hoặc 2x + 2 = 0
<=> x = 0 hoặc x = -1
1.
A=19^5^1^8^9^0+2^9^1^9^6^9
Ta luôn có 1a=1 với a là số nguyên dương
=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29
=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1
Vậy A có tận cung là 1.
2.
B=1/3+1/32+...+1/32005
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005<1
=>2B<1=>B<1/2
Vậy B<1/2.
.
.
1) Ta có:
\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)
Mà 195=194+1=...1.19=...19
29=22.4+1=...6 .2=...2
=>A=...19 + ...2= ...1
Vậy A có chữ số tận cùng là 1
a: \(=2^2\cdot9\cdot\dfrac{1}{6\cdot9}\cdot\dfrac{4^2}{9^2}=\dfrac{2^2}{6}\cdot\dfrac{2^4}{3^4}=\dfrac{2^6}{2\cdot3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\left(\dfrac{1}{2}\right)^3\cdot2^3\cdot\left(\dfrac{1}{2}\right)^2}{\left(-8\right)^2\cdot16}\cdot2^6=\dfrac{\dfrac{1}{2^2}}{64\cdot16}\cdot64=\dfrac{1}{4}:16=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\)
a: \(=2^2\cdot9\cdot\dfrac{1}{3^3\cdot2}\cdot\dfrac{2^4}{3^4}=\dfrac{2^4\cdot2^2}{2}\cdot\dfrac{9}{3^3\cdot3^4}=\dfrac{2^5}{3^5}=\left(\dfrac{2}{3}\right)^5\)
b: \(=2^8\cdot\dfrac{3^4}{2^4}=3^4\cdot2^4=6^4\)
c: \(=\dfrac{\dfrac{1}{2^3}\cdot\dfrac{1}{2^2}\cdot8}{\left(-8\right)^2\cdot2^4}\cdot2^6=\dfrac{1}{2^2}\cdot2^6:2^{10}=\dfrac{2^4}{2^{10}}=\dfrac{1}{2^6}=\left(\dfrac{1}{8}\right)^2\)
Câu 1:
2A=2+22+...+2201
A=2A-A=2201-1
⇒A+1=2201 là một lũy thừa.
Câu 2:
3B=32+33+...+32006
2B=3B-B=32006-3
⇒2B+3=32006 là một lũy thừa của 3(ĐPCM)
Câu 3 không rõ đề nhé!
bạn thử xem lại xem bạn có chép sai ở đâu ko nhé