K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r

    Trong các phát biểu sau phát biểu nào là phát biểu sai

A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r

B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r

C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r

D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r

Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:

A. R - r < d < R + r        

B. d = R - r

C. d > R + r        

D. d = R + r

Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?

A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'

B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'

C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác

D.Trong ba câu trên,chỉ có câu a là câu sai

Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó: 

(1) EO=EC=R và OF=FD=R 

(2) PE là đường cao của tam giác POC

(3) PF là đường cao của tam giác POD

Trong các câu trên: 

A.Chỉ có câu (1) đúng 

B.Chỉ có câu (2) đúng

C.Chỉ có câu (3) đúng 

D.Cả ba câu đều đúng 

E.Tất cả ba câu đều sai

Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng

    Tiếp tuyến của đường tròn tại A là

A. Đi qua A và vuông góc AB

B. Đi qua A và song song BC

C. Đi qua A và song song AC

D. Đi qua A và vuông góc BC

0
3 tháng 6 2019

Hỏi đáp ToánHiện tai chưa làm đc câu c! Thông cỉm!

21 tháng 1 2021

Gọi B', C' lần lượt là giao điểm khác A của AB, AC với (O').

Do BM, CM là tiếp tuyến của (O') nên ta dễ dàng chứng minh được:

\(BM^2=BA.BB'\)\(CM^2=CA.CC'\)

\(\Rightarrow\dfrac{BM^2}{CM^2}=\dfrac{BA.BB'}{CA.CC'}\). (1) 

\(\Delta AOC\sim\Delta AO'C'(g.g)\Rightarrow \frac{AC}{AC'}=\frac{AO}{AO'}\).

Tương tự, \(\frac{AB}{AB'}=\frac{AO}{AO'}\).

Do đó \(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\Rightarrow\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\Rightarrow\dfrac{AB}{AC}=\dfrac{BB'}{CC'}\). (2)

Từ (1), (2) suy ra \(\dfrac{BM}{CM}=\dfrac{AB}{AC}\).

Theo tính chất đường phân giác đảo thì AM là đường phân giác ngoài của tam giác ABC

\(\Rightarrow\widehat{MAB}+\widehat{MAC}=180^o\Rightarrow180^o+\widehat{BAC}=2\widehat{EAC}\)

\(\Rightarrow180^o-\widehat{EAC}=\dfrac{180^o-\widehat{BAC}}{2}\). (3) 

Các tứ giác FDEA, DBAC nội tiếp nên \(\widehat{FDB}=180^o-\widehat{EAC};\widehat{BDC}=180^o-\widehat{BAC}\). (4)

Từ (3), (4) suy ra \(\widehat{FDB}=\dfrac{\widehat{BDC}}{2}\) nên DF là phân giác góc BDC.