K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Sao ko có gì vậy ạ 

30 tháng 9 2016

mỹ lừa tao

 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Ta dự đoán được sau khi ghép 3 góc nhọn đó sau khi ghép lại có tổng là \({180^o}\)

b) Qua A kẻ đường thẳng xy song song với BC

Ta có: xy // BC \( \Rightarrow \) \(\widehat B\) = \(\widehat {{A_1}}\) ( so le trong )

 và  \(\widehat C\) = \(\widehat {{A_2}}\)( so le trong )

Mà \(\widehat {{A_1}} + \widehat {BAC} + \widehat {{A_2}} = {180^o}\)

\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \) Tổng 3 góc trong 1 tam giác = \({180^o}\) 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

2 góc kề bù trong hình là: góc mOt và tOn

Ta có:

\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ  - \widehat {tOn} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ba góc tại mỗi đỉnh chung của ba tam giác tạo thành góc bẹt

Do đó, tổng của chúng bằng 180 độ.

Ta thấy ba điểm A, B, C thẳng hàng.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)

Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)

Xét \(\Delta DEF\) và \(\Delta GHK\) có:

\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)

Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh