Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này là bài của lớp 9 nha!! có chỗ nào ko hiểu ib
\(a,A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}.\)
\(=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)
\(=\sqrt{2}\left(3+5-\frac{7}{2}\right)\)
\(=\frac{9}{2}\sqrt{2}\)
\(b,B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)\)
\(=2^2\sqrt{3^2}-7^2\)
\(=12-49=-37\)
a )
\(A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}\)
\(A=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)
\(A=(3+5-\frac{7}{2})\sqrt{2}\)
\(A=\frac{9}{2}\sqrt{2}=\frac{9\sqrt{2}}{2}\)
b)
\(B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)=\left(2\sqrt{3}\right)^2-7^2=12-49=-37\)
b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)
\(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)
______________________________________________
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)
Từ (1) suy ra:
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)
Minh AnNgọc HnueBăng Băng 2k6Thảo PHồ Đđề bài khó wáỖ CHÍ DŨNGBảo TrâmhLương Minh HằngươngAnh Qua
c/
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)
\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)
a)
\((\sqrt2- \sqrt3).(\sqrt2+\sqrt3)\)
=\(\sqrt2.\sqrt2 + \sqrt2.\sqrt3-\sqrt3.\sqrt2+\sqrt3.\sqrt3\)
=\(1.1+1.\sqrt3-\sqrt3.1+\sqrt3.\sqrt3\)
=1+0+3=4
\(a,\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2=2-3=-1\)
\(b,-\left(\sqrt{2}\right)^4+\left(\sqrt{3}\right)^6=-\left(\sqrt{2}^2\right)^2+\left(\sqrt{3}^2\right)^3=-2^2+3^3=-4+27=23\)
\(c,A=\frac{1}{1-\frac{1}{1-2^{-4}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=\frac{1}{1-\frac{1}{1-\frac{1}{16}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{15}{16}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}\)
\(=\frac{1}{1-\frac{16}{15}}+\frac{1}{1+\frac{2}{3}}=\frac{1}{-\frac{1}{15}}+\frac{1}{\frac{5}{3}}=-15+\frac{3}{5}=-14,4\)
\(d,B=9+99+...+99...9=\left(10-1\right)+\left(100-1\right)+...+\left(100...0-1\right)\)
\(=\left(10+100+...+100...0\right)-\left(1+1+...+1\right)=11...10-50=11...1060\)(có 48 chữ số 1)
Nam bán cá