Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đè \(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đk:\(x\ge-3\)
\(pt\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\\\sqrt{x+7}=b\end{cases}\left(a,b>0\right)}\) thì
\(\Leftrightarrow ab=3a+2b-6\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Rightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=2\\\sqrt{x+7}=3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) (thỏa)
\(\sqrt{2x^2-4x+5}=x-4\left(x\ge4\right)\)
\(\Rightarrow2x^2-4x+5=x^2-8x+16\)
\(\Rightarrow x^2+4x-11=0\)
Có: \(\Delta=4^2-4\left(-11\right)=60>0\Rightarrow\sqrt{\Delta}=2\sqrt{15}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\left(l\right)\\x=\frac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\left(l\right)\end{cases}}\)
Vậy \(x\in\left\{\phi\right\}\)
a)x2-10=0
<=>x2=10
<=>x=\(\sqrt{10}\)hoặc \(-\sqrt{10}\)
b)2x2-6=0
<=>2x2=6
<=>x=3
<=>x=\(\sqrt{3}\)hoặc\(-\sqrt{3}\)
c)câu này mk chưa hiểu đề cho lắm