Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào hình vẽ.
Khi electron ở mức n = 3 (M) => phát ra 2 vạch.
n = 2 => phát ra 1 vạch.
Tổng: 2+1 = 3 vạch.
Như vậy phải kích thích điện tử lên mức M thì chỉ phát ra 3 vạch.
Khi electron nhảy từ trạng thái có năng lượng En sang trạng thái có mức năng lượng nhỏ hơn Em thì nguyên tử phát ra bức xạ thỏa mãn
\(hf = E_m-E_n \)
=> \(h\frac{c}{\lambda} = E_m-E_n \)
=> \(\lambda=\frac{hc}{E_m-E_n} =\frac{6,625.10^{-34}.3.10^8}{12,75.1,6.10^{-19}}=9,74.10^{-8}m= 0,0974 \mu m.\)
Chú ý : \(E_m-E_n = -0,85-(-13,6)= 13,6 - 0,85=12,75eV\)
P : ♀ đỏ XAX-×♂ trắng XaYà F1 :50% mắt đỏ, 50% mắt trắng.
Nếu P ♀ đỏ XAXA à F1 đồng tính mắt đỏ à P ♀ đỏ XAXa. àF1 :XAXa :XAY : XaXa : XaY.
♀ F1 XAXa, XaXa à giao tử (1XA:3Xa) ; ♂ F1 XAY, XaYà giao tử (1XA:Xa:3Y)
F1× F1 = (1XA:3Xa)(XA:Xa :2Y)
F2 Ruồi cái, mắt đỏ = (1XAXA :4XAXa)=5/16=31,25%
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_p+m_pc^2+K_{Li}+m_{Li}c^2= 2K_{He} + 2m_{He}c^2 \)
=> \(K_p+m_pc^2+m_{Li}c^2= 2K_{He} + 2m_{He}c^2 \)
=> \( 2K_{He} =K_p+(m_p+m_{Li}-2m_{He})c^2=K_p+W_{tỏa} = 1,6+17,4 = 19MeV.\)
=> \(K_{He} = 9,5 MeV.\)
X là hạt nhân \(_3^6Li\)
\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{Li}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)
=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,575MeV.\)
\(_4^9 Be + p \rightarrow X + _3^6 Li\)
Nhận xét: \(m_t-m_s = m_{Be}+m_p - (m_X+ m_{Li}) = -1,33.10^{-3} < 0\), phản ứng thu năng lượng.
Sử dụng công thức \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,33.10^{-3}u.c^2 = K_p - (K_X+K_{Li}) \) (do Be đứng yên nên KBe = 0)
Do 1 u = 931 MeV/c2
=> \(K_X = K_p- 1,238- K_{Li} = 5,45 - 1,238 - 3,55 = 0,662 MeV. \)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
\(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0187u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0187.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,605MeV.\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1,0073.K_p}{2.2.4,0015.K_{He}} \)
=> \(\alpha \approx 167^031'\).
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Phản ứng là tỏa năng lượng nên
\(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(m_p +m_{Li} - 2m_{He} =2K_{He} - K_p\) (do Li đứng yên nên KLi = 0)
=> \( 2K_{He} =K_p+(m_p+m_{Li}-2m_{He})c^2\)
=> \( 2K_{He} =19,22MeV.\)
=> \(K_{He} = 9,6 MeV.\)