K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

*hình gồm hai nửa đường tròn đường kính 4cm và hai cung 1/6 đường tròn bán kính 8cm

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

1 tháng 3 2019

*hình có hai nửa đường tròn đường kính 4cm và bốn cung bằng 1/6 đường tròn bán kính 4cm

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

18 tháng 6 2021

Có \(\widehat{ADH}=\widehat{AEH}=90^0\)

=> Tứ giác ADHE nội tiếp đt

=> \(\widehat{AED}=\widehat{AHD}\) mà \(\widehat{AHD}=\widehat{ABC}\) (vì cùng phụ với \(\widehat{HAB}\))

=> \(\widehat{AED}=\widehat{ABC}\) mà \(\widehat{DAE}=\widehat{BDH}=90^0\)

=> \(\Delta ADE\sim\Delta DHB\left(g.g\right)\) \(\Rightarrow\dfrac{C_{ADE}}{C_{DHB}}=\dfrac{AD}{DH}\)

CM tt: \(\dfrac{C_{ADE}}{C_{ECH}}=\dfrac{AE}{EH}=\dfrac{DH}{AD}\)

\(\Rightarrow\dfrac{C_{ADE}}{C_{ECH}}.\dfrac{C_{ADE}}{C_{DHB}}=1\Rightarrow\)\(\dfrac{\left(C_{ADE}\right)^2}{ab}=1\)\(\Leftrightarrow C_{ADE}=\sqrt{ab}\)

\(R=2:2:3.14=\dfrac{1}{3.14}=\dfrac{50}{157}\left(dm\right)\)

=>\(m_A=3\cdot\dfrac{50}{157}=\dfrac{150}{157}\left(dm\right)\)

=>\(a=\dfrac{150}{157}\cdot\dfrac{2}{\sqrt{3}}\simeq1.103\left(dm\right)\)

C=1,103*3=3,309dm

AB=2cm

=>S ABC=căn 3(cm2)

=>h=12(cm)

27 tháng 9 2021

bạn tự vẽ hình giúp mik nha

\(AH=\sqrt{AB^2-BH^2}\left(pytago\right)=\sqrt{6^2-3^2}=3\sqrt{3}\)

trong \(\Delta ABC\) vuông tại A có

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\)

\(AC=\sqrt{AH^2+HC^2}=\sqrt{\left(3\sqrt{3}\right)^2+9^2}=6\sqrt{3}\)

chu vi \(\Delta ABC\)

=AB+BC+AC=6+12+6\(\sqrt{3}\)=28,4

chu vi \(\Delta ABH\)

=AB+BH+AH=6+3+3\(\sqrt{3}\)=14,2

chu vi \(\Delta AHC\)

=AH+HC+AC=3\(\sqrt{3}\)+9+\(6\sqrt{3}\)=24,6

25 tháng 9 2017

a, Aps dụng địnhlí Py-ta-go:
BC^2=AB^2+AC^2=6^2 + 8^2 =100
->BC=10(cm)
b, AD là phân giác góc A:=>BD/CD=AB/AC
=>BD/CD=6/8=3/4
=>BD/3=CD/4
mÀ bD+CD=10->BD/3=CD/4=(BD+CD)/7=10/7
=>bd=10/7*3=30/7(cm)
=>CD=10/7*4=40/7(cm)
c, Ta thấy: 
DE vuông góc với AB
DF vg góc với AC =>> Tứ giác AEDF là hình chữ nhật mà AD là p/giac góc A=>Tứ giác AEDF là hình vuông
Góc A: vuông
Ta có: S(ABC)=S(ADB)+S(ADC)
<=>1/2AB*AC=1/2ED*AB+1/2FD*AC
Vì:DE=DF(AEDF là hình vuông)=>DE=DF=(AB*AC)/(AB+AC)=49/14=24/7(cm)
=>S(AEDF)=DE^2=11,8(cm2)
=>C(AEDF)=4DE=4*24/7=13,71(CM

1: Xét \(\left(O\right)\) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác OCAD có

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

nên OC=OD=AC=AD

mà OA=OC

nên OC=OD=AC=AD=OA

Xét ΔOAC có OA=OC=AC

nên ΔOAC đều