Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*hình gồm hai nửa đường tròn đường kính 4cm và hai cung 1/6 đường tròn bán kính 8cm
*hình có hai nửa đường tròn đường kính 4cm và bốn cung bằng 1/6 đường tròn bán kính 4cm
Có \(\widehat{ADH}=\widehat{AEH}=90^0\)
=> Tứ giác ADHE nội tiếp đt
=> \(\widehat{AED}=\widehat{AHD}\) mà \(\widehat{AHD}=\widehat{ABC}\) (vì cùng phụ với \(\widehat{HAB}\))
=> \(\widehat{AED}=\widehat{ABC}\) mà \(\widehat{DAE}=\widehat{BDH}=90^0\)
=> \(\Delta ADE\sim\Delta DHB\left(g.g\right)\) \(\Rightarrow\dfrac{C_{ADE}}{C_{DHB}}=\dfrac{AD}{DH}\)
CM tt: \(\dfrac{C_{ADE}}{C_{ECH}}=\dfrac{AE}{EH}=\dfrac{DH}{AD}\)
\(\Rightarrow\dfrac{C_{ADE}}{C_{ECH}}.\dfrac{C_{ADE}}{C_{DHB}}=1\Rightarrow\)\(\dfrac{\left(C_{ADE}\right)^2}{ab}=1\)\(\Leftrightarrow C_{ADE}=\sqrt{ab}\)
\(R=2:2:3.14=\dfrac{1}{3.14}=\dfrac{50}{157}\left(dm\right)\)
=>\(m_A=3\cdot\dfrac{50}{157}=\dfrac{150}{157}\left(dm\right)\)
=>\(a=\dfrac{150}{157}\cdot\dfrac{2}{\sqrt{3}}\simeq1.103\left(dm\right)\)
C=1,103*3=3,309dm
bạn tự vẽ hình giúp mik nha
\(AH=\sqrt{AB^2-BH^2}\left(pytago\right)=\sqrt{6^2-3^2}=3\sqrt{3}\)
trong \(\Delta ABC\) vuông tại A có
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\)
\(AC=\sqrt{AH^2+HC^2}=\sqrt{\left(3\sqrt{3}\right)^2+9^2}=6\sqrt{3}\)
chu vi \(\Delta ABC\)
=AB+BC+AC=6+12+6\(\sqrt{3}\)=28,4
chu vi \(\Delta ABH\)
=AB+BH+AH=6+3+3\(\sqrt{3}\)=14,2
chu vi \(\Delta AHC\)
=AH+HC+AC=3\(\sqrt{3}\)+9+\(6\sqrt{3}\)=24,6
a, Aps dụng địnhlí Py-ta-go:
BC^2=AB^2+AC^2=6^2 + 8^2 =100
->BC=10(cm)
b, AD là phân giác góc A:=>BD/CD=AB/AC
=>BD/CD=6/8=3/4
=>BD/3=CD/4
mÀ bD+CD=10->BD/3=CD/4=(BD+CD)/7=10/7
=>bd=10/7*3=30/7(cm)
=>CD=10/7*4=40/7(cm)
c, Ta thấy:
DE vuông góc với AB
DF vg góc với AC =>> Tứ giác AEDF là hình chữ nhật mà AD là p/giac góc A=>Tứ giác AEDF là hình vuông
Góc A: vuông
Ta có: S(ABC)=S(ADB)+S(ADC)
<=>1/2AB*AC=1/2ED*AB+1/2FD*AC
Vì:DE=DF(AEDF là hình vuông)=>DE=DF=(AB*AC)/(AB+AC)=49/14=24/7(cm)
=>S(AEDF)=DE^2=11,8(cm2)
=>C(AEDF)=4DE=4*24/7=13,71(CM
1: Xét \(\left(O\right)\) có
OA là một phần đường kính
CD là dây
OA\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét tứ giác OCAD có
H là trung điểm của đường chéo CD
H là trung điểm của đường chéo OA
Do đó: OCAD là hình bình hành
mà OC=OD
nên OCAD là hình thoi
2: Ta có: OCAD là hình thoi
nên OC=OD=AC=AD
mà OA=OC
nên OC=OD=AC=AD=OA
Xét ΔOAC có OA=OC=AC
nên ΔOAC đều