K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Theo giả thiết ta có  x + 6 y + 8 x + y = 2 5 x + 2 y x − 1 x − 3 y = y + 2 2

⇔ x = 3 y 3 y − 1 3 y − 3 y = y + 2 2 ⇔ x = 3 y 0 = y + 2 2 ⇔ x = − 6 y = − 2 .

Suy ra  x 2 + y 2 = 40.

Chọn đáp án A.

20 tháng 12 2018

Chọn A

+ Ba số x + 6 y ,5 x + 2 y ,8 x + y  lập thành cấp số cộng nên

x + 6 y + 8 x + y = 2 5 x + 2 y ⇔ 9 x + ​ 7 y =    10 x + ​  4 y   ⇔ x = 3 y

+ Ba số x + 5 3 , y − 1,2 x − 3 y  lập thành cấp số nhân nên x + 5 3 2 x − 3 y = y − 1 2 .

Thay x= 3y vào ta được :

3 y + 5 3 2.3 y − 3 y = y − 1 2 ⇔ 3 y + 5 3 .3 y =    y 2 − 2 y + ​    1 ⇔ 9 y 2 + ​ 5 y −    y 2 + ​ 2 y −     1 = 0

⇔ 8 y 2 + 7 y − 1 = 0 ⇔ y = − 1 hoặc  y = 1 8 .

Với y= -1 thì x= - 3; với y = 1 8  thì x = 3 8 .

21 tháng 4 2016

Theo giả thiết ta có : \(\begin{cases}\left(5x-y\right)+\left(x+2y\right)=2\left(2x+3y\right)\\\left(y+1\right)^2\left(x-1\right)^2=\left(xy+1\right)^2\end{cases}\)

                             \(\Leftrightarrow\begin{cases}2x=5y\\x+y=2\end{cases}\) hoặc \(\Leftrightarrow\begin{cases}2x=5y\\xy+x+y=0\end{cases}\)

\(\Leftrightarrow\begin{cases}2x=5y\\x+y=2\end{cases}\) hoặc \(\Leftrightarrow\begin{cases}2x=5y\\y\left(5y\right)+5y+2y=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=\frac{10}{3}\\y=\frac{4}{3}\end{cases}\) hoặc \(\begin{cases}x=0,y=0\\x=-\frac{3}{4},y=-\frac{3}{10}\end{cases}\)

7 tháng 6 2019

Ta có hệ phương trình:

Từ đó ta suy ra

Thế (1) vào (2) ta được: 8y2+7y-1=0⇒y=-1 hoặc y=1/8

Do y < 0 , ta được y = -1, x = -3

Đáp án B

20 tháng 4 2016

Theo giả thiết ta có : \(\cot A+\cot C=2\cot B\)

\(\Leftrightarrow\frac{\sin\left(A+C\right)}{\sin A\sin C}=\frac{2\cos B}{\sin B}\)

\(\Leftrightarrow\sin^2B=2\sin B\sin C\cos B=\left[\cos\left(A-C\right)-\cos\left(A+C\right)\right]\cos B\)

\(\Leftrightarrow\sin^2B=\cos\left(A-C\right)\cos B-\cos\left(A+C\right)\cos B=-\cos\left(A-C\right)\cos\left(A+C\right)+\cos^2B\)

\(\Leftrightarrow\sin^2B=-\frac{1}{2}\left(\cos2A+\cos2C\right)+1-\sin^2B=-\frac{1}{2}\left(1-2\sin^2A+1-2\sin^2C\right)+1-\sin^2B\)

\(\Rightarrow2\sin^2B=\sin^2A+\sin^2C\Leftrightarrow2b^2=a^2+c^2\)

Vậy chứng tỏ \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng

20 tháng 4 2016

Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)

\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)

\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)

\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)

\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)

Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng

7 tháng 1 2017

Chọn đáp án C

Có điều kiện:

20 tháng 4 2016

Theo giả thiết : 

\(\Leftrightarrow\log_xa+\log_zc=2\log_yb\)

\(\Leftrightarrow\frac{1}{\log_ax}+\frac{1}{\log_cz}=\frac{2}{\log_by}\)

\(\Rightarrow\frac{1}{\log y_b}=\frac{2\log_ax.\log_cz}{\log_ax+\log_cz}\)

\(\Rightarrow\) Điều phải chứng minh

20 tháng 4 2016

Nếu 3 cạnh a, b, c lập thành cấp số cộng thì ta có a + c = 2b

\(\Leftrightarrow\sin A+\sin C=2\sin B\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A-C}{2}=4\sin\frac{B}{2}\cos\frac{B}{2}\left(1\right)\)

Vì \(A+C=180^0-B\Rightarrow\frac{A+C}{2}=90^0-\frac{B}{2}\)

<=> \(\sin\frac{A+C}{2}=\sin\left(90^0-\frac{B}{2}\right)=\cos\frac{B}{2}\) hoặc \(\cos\frac{A+C}{2}=\cos\left(90^0-\frac{B}{2}\right)=\sin\frac{B}{2}\) (*)

Do đó (1) trở thành :

\(\Leftrightarrow\sin\frac{A+C}{2}\cos\frac{A-C}{2}=2\sin\frac{A+C}{2}\cos\frac{A+C}{2}\)

\(\Leftrightarrow\cos\frac{A-C}{2}=2\sin\frac{B}{2}\)

\(\Leftrightarrow\cos\frac{A-C}{2}=2\cos\frac{A+C}{2}\)

\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}+\sin\frac{A}{2}\sin\frac{C}{2}=2\cos\frac{A}{2}\cos\frac{C}{2}-2\sin\frac{A}{2}\sin\frac{C}{2}\)

\(\Leftrightarrow\cos\frac{A}{2}\cos\frac{C}{2}=3\sin\frac{A}{2}\sin\frac{C}{2}\)

\(\Leftrightarrow\cot\frac{A}{2}\cot\frac{C}{2}=3\) => Điều phải chứng minh

                                  

20 tháng 1 2020

sao dòng cuối sina/2.sinc/2 bằng 1 vậy ạ?

2 tháng 2 2017

Đáp án C