Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > - 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < - 1\).
B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < 1\).
C. \(\forall x \in \mathbb{R},x > - 1 \Rightarrow {x^2} > 1\)
Sai, chẳng hạn với \(x = 0 > - 1\) nhưng \({x^2} = 0 < 1\)
D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)
Đúng.
Chọn đáp án D
a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)
vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)
b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)
Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)
c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)
\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)