Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căn bậc hai số học Căn bậc hai của một số a không âm là số x sao cho \(x^2\) = a. Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là \(\sqrt{a}\) và số âm kí hiệu là -√a. Số 0 có đúng một căn bậc hai là chính số 0, ta viết \(\sqrt{0}\) = 0.
Vd :
\(\sqrt{4}=2\)
\(\sqrt{16}=4\)
Ta có:
2x^3+3x=0
=>x(2x^2+3)
=>x=0 hoặc 2x^2+3=0
Xét 2x^2+3=0 có:
2x^2+3 = 0
<=>2x^2=-3
<=>x^2=-3/2
<=>x=\(\sqrt{-\frac{3}{2}}\)
Ta có : \(A\left(x\right)=2x+6\)
Vì x = -3 là nghiệm của đa thức trên nên thay x = -3 vào đa thức trên ta được :
\(-6+6=0\)* đúng *
Vậy x = -3 là nghiệm đa thức trên
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
`6x^2+9=0`
Vì \(x^2\ge0\text{ }\forall\text{ x}\)
`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)
`\rightarrow` Đa thức vô nghiệm.
Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:
\(6x^2+9=0\)
\(\rightarrow\text{ }6x^2=0-9\)
\(\rightarrow\text{ }6x^2=-9\)
Mà \(x^2\ge0\text{ }\forall\text{ x}\)
\(\rightarrow\text{ Đa thức vô nghiệm.}\)
(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).
Dùng phương pháp phản chứng em nhé:
Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:
6\(x^2\) + 9 = 0
Mặt khác ta có: \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)
vậy 6\(x^2\) + 9 = 0 (là sai) hay
Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)