Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
Ta có : (2x + 1)4 = (2x + 1)6
=> (2x + 1)4 - (2x + 1)6 = 0
<=> (2x + 1)4[1 - (2x + 1)2] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-1\\\left(2x+1\right)=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x=0;-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0;-1\end{cases}}\)
Vậy x thuộc \(-\frac{1}{2};0;-1\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
1, \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2-1=5\)
\(\Leftrightarrow12x=-3\)
\(\Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=\dfrac{-1}{4}\)
2, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow5x=7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy...
5, \(x^2-9+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy...
1) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\) (1)
\(\Leftrightarrow4x^2+12x+9-\left(4x^2-1\right)=5\)
\(\Leftrightarrow4x^2+12x+9-4x^2+1=5\)
\(\Leftrightarrow12x+10=5\)
\(\Leftrightarrow12x=5-10\)
\(\Leftrightarrow12x=-5\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{5}{12}\right\}\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\) (2)
\(\Leftrightarrow x^3+27-x^3-5x=20\)
\(\Leftrightarrow27-5x=20\)
\(\Leftrightarrow-5x=20-27\)
\(\Leftrightarrow-5x=-7\)
\(\Leftrightarrow x=\dfrac{7}{5}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{7}{5}\right\}\)
3) \(\left(x+2\right)^3-x\left(x^2+6x\right)=15\) (3)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=15\)
\(\Leftrightarrow12x+8=15\)
\(\Leftrightarrow12x=15-8\)
\(\Leftrightarrow12x=7\)
\(\Leftrightarrow x=\dfrac{7}{12}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{7}{12}\right\}\)
4) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+10\right)\left(x-1\right)=7\) (4)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x\left(x+10\right)\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2-10x\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(-9x+1\right)=7\)
\(\Leftrightarrow-9x^2+x+9x-1=7\)
\(\Leftrightarrow-9x^2+10-1=7\)
\(\Leftrightarrow-9x^2+10x-1-7=0\)
\(\Leftrightarrow-9x^2+10x-8=0\)
\(\Leftrightarrow9x^2-10x+8=0\)
\(\Leftrightarrow x\notin R\)
5) \(x^2-9+5\left(x+3\right)=0\) (5)
\(\Leftrightarrow x^2-9+5x+15=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+1}{2}\\x=\dfrac{-5-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-3;-2\right\}\)
2x-3=x+1/2
a,2x-3=x+1/2 b,4x-(x+1/2)=2x+(1/2-5) c,2/3-1/3(x-2/3)-1/2(2x+1)=5
2x-x =1/2+3 4x-x-1/2=2x+1/2-5 d,(x+1/2).(x-3/4)=0
x=7/2 4x-x-2x =1/2-5+1/2 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
x=-4
e,(2x-1)(3x+1/5)=0
\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)
f, 4x2-2x=0
Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.