K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

a) Xét \(\Delta BAD\) và \(\Delta BCE:\)

\(\widehat{B}chung.\)

\(\widehat{D}=\widehat{E}\left(=90^o\right).\)

\(\Rightarrow\Delta BAD\sim\Delta BCE\left(g-g\right).\)

b) Xét \(\Delta ABC:\)

CE là đường cao \(\left(CE\perp AB\right).\)

AD là đường cao \(\left(AD\perp BC\right).\)

Mà F là giao điểm của CE và AD.

\(\Rightarrow BF\) là đường cao.

Xét \(\Delta ABC\) cân tại B:

BF là đường cao (gt).

\(\Rightarrow BF\) là phân giác \(\widehat{ABC}.\)

 

27 tháng 3 2022

Thanks nha

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

25 tháng 10 2017

b) Vì 50 > 49 nên \(\sqrt{50}\) > \(\sqrt{49}\) = 7

Vì 2 > 1 nên \(\sqrt{2}\) > \(\sqrt{1}\) = 1

\(\Rightarrow\) \(\sqrt{50}\) + \(\sqrt{2}\) > 7 + 1 = 8 (1)

Ta nhận thấy: 50 + 2 = 52 < 64. \(\Rightarrow\) \(\sqrt{50+2}\) < \(\sqrt{64}\) = 8 (2)

Từ (1) và (2) suy ra ​​​\(\sqrt{50}\) + \(\sqrt{2}\) > \(\sqrt{50+2}\)

Vậy,...

25 tháng 10 2017

OK, tôi sẽ giúp bn.

a) Vì 26 > 25 nên \(\sqrt{26}\) > \(\sqrt{25}\) = 5

Vì 17 > 16 nên \(\sqrt{17}\) > \(\sqrt{16}\) = 4

\(\Rightarrow\) \(\sqrt{26}\) + \(\sqrt{17}\) > 5 + 4 = 9

Vậy, \(\sqrt{26}\) + \(\sqrt{17}\) > 9

23 tháng 4 2017

\(f\left(x\right)=9-3x^3-2x^3+x^2+4x-6\)

\(g\left(x\right)=x^3-6x^3+2x^3+4x^2+7x-3x+3\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=9-3x^3-2x^3+x^2+4x-6-\left(x^3-6x^3+2x^3+4x^2+7x-3x+3\right)\)

Bạn tự phá dấu và trừ ra nhé, ghi ở đây dài lắm, kết quả bằng :

\(-2x^3-3x^2\)

23 tháng 4 2017

Ta có:

\(f\left(x\right)=-5x^3+x^2+4x+3\)

\(g\left(x\right)=-3x^3+4x^2+4x+3\)

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

23 tháng 7 2017

sửa lại đề nè:

So sánh: 291 và 535

Ta có: 291 = (213)7 = 81927

535 = (55)7 = 31257

Vì 81927>31257

=> 291>535

23 tháng 7 2017

Tui lỡ viết lộn

21 tháng 3 2017

Nguyễn Thị Nhã Doanh ukm! Chào bn!vui

21 tháng 3 2017

cố gắng lên nha bn!!!ok

Nguyễn Thị Nhã Doanh