Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V
Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)
Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)
Dau '=' xay ra khi \(a=b=c\)
Với a,b,c,d >0. Áp dụng bất đẳng thức Cô-si ta có :
\(a+b\ge2\sqrt{ab}\)
\(c+d\ge2\sqrt{cd}\)
Do đó : \(a+b+c+d\ge2\sqrt{ab}+2\sqrt{cd}\) \(=2\left(\sqrt{ab}+\sqrt{cd}\right)\) (1)
Áp dụng bất đẳng thức Cô-si ta có :
\(\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\) (2)
Từ (1) và (2) ta có : \(a+b+c+d\ge4\sqrt[4]{abcd}\)
\(\Rightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
\(\left(\frac{a+b+c+d}{4}\right)^4\ge abcd\)
Đẳng thức xảy ra khi \(a=b=c=d\)
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)
Ta lại có:
\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)
Từ (1) và (2) dấu = xảy ra khi \(x=-1\)
\(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\)
\(=\left(a^2+2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
Lm nốt
Em nghĩ dùng tam giác Bát - cam :v
\(\frac{\frac{1\rightarrow\text{Bậc 0}}{\left|1\right|1|\rightarrow\text{Bậc 1 }}}{\frac{\left|1\right|2\left|1\right|\rightarrow\text{Bậc 2}}{\frac{|1\left|3\right|3\left|1\right|\rightarrow\text{Bậc 3}}{\left|1\right|4\left|6\right|4\left|1\right|\rightarrow\text{Bậc 4}}}}\)(em vẽ hình hơi xấu:v). Từ tam giác bát cam ta có hằng đẳng thức:
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^2+b^4\)
Còn (a-b)4 thì nói ra hơi khó hiểu, đành khai triển thôi:v, mọi người nói giúp em với ạ.