Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ge-1\)
Phương trình đã cho tương đương với
\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)
Xét hàm số f(t) =t3+t trên R
f'(t)=3t2+1>0 với mọi x \(\in\)R
Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)
Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)
\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)
Với v=1 => x=-1
Vậy x=-1 là nghiệm của phương trình
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-7}{156}\)
\(\dfrac{-6}{9}+\dfrac{-12}{16}=\dfrac{-17}{12}\)
\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-7}{55}\)
\(\dfrac{-34}{37}.\dfrac{74}{-85}=\dfrac{4}{5}\)
\(\dfrac{-5}{9}:\dfrac{-7}{18}=\dfrac{10}{7}\)
Chúc bạn học tốt!!!
a) \(\left(-\dfrac{1}{39}\right)+\left(-\dfrac{1}{52}\right)=\dfrac{-4-3}{156}=-\dfrac{7}{156}\)
b) \(\left(-\dfrac{6}{9}\right)+\left(-\dfrac{12}{16}\right)=-\dfrac{6}{9}-\dfrac{12}{16}=-\dfrac{17}{12}\)
c) \(-\dfrac{2}{5}-\left(-\dfrac{3}{11}\right)=-\dfrac{2}{5}+\dfrac{3}{11}=-\dfrac{7}{55}\)
d) \(\left(-\dfrac{34}{37}\right)\cdot\left(-\dfrac{74}{85}\right)=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)
e) \(\left(-\dfrac{5}{9}\right):\left(-\dfrac{7}{18}\right)=\dfrac{5}{9}\cdot\dfrac{18}{7}=5\cdot\dfrac{2}{7}=\dfrac{10}{7}\)
ĐK : \(x\ge\dfrac{-5}{2}\) PT tương đương
\(\Leftrightarrow\sqrt{2x+5}-3+\sqrt{x^2+5}-3=0\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x+5}+3}+\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+5}+3}=0\)
đến đây thì ez rồi
\(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)