Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét t/g ABM và t/g ACN có:
góc AMB = góc ANC = 90 độ
AB = AC (gt)
góc A chung
=> t/g ABM = t/g ACN (ch-gn)
=>AM=AN
b, Xét t/g AKN và t/g AKM có:
góc ANK = góc AMK = 90 độ
AM = AN (cmt)
AK chung
=> t/g AKN = t/g AKM (ch-cgv)
=> góc KAN = góc KAM
=> AK là tia pg của góc BAC
c, Vì góc BAC = 60 độ
Mà góc ABC = góc ACB
=> góc BAC = góc ABC = góc ACB = 60 độ
=> t/g ABC đều
=> AB=BC=AC
MÀ BC=8cm
=>AB=BC=AC=8cm
Sửa đề: Vuông góc với AC,AP tại N,P
a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có
BI chung
\(\widehat{PBI}=\widehat{MBI}\)
Do đó: ΔBPI=ΔBMI
=>BP=BM
b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có
CI chung
\(\widehat{MCI}=\widehat{NCI}\)
Do đó: ΔIMC=ΔINC
=>IM=IN
c: ΔMCI=ΔNCI
=>MC=CN
BP+CN
=BM+MC
=BC
d: ΔBPI=ΔBMI
=>IP=IM
mà IM=IN
nên IP=IN
Xét ΔAPI vuông tại P và ΔANI vuông tại N có
AI chung
IP=IN
Do đó: ΔAPI=ΔANI
=>\(\widehat{PAI}=\widehat{NAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
a, Vì △ABC cân tại A => AB = AC và ∠ABC = ∠ACB = (180o - ∠BAC) : 2 = (180o - 80o) : 2 = 100o : 2 = 50o
Xét △ABE vuông tại E có: ∠ABE + ∠BAE = 90o (tổng 2 góc nhọn trong △ vuông)
=> ∠ABE + 80o = 90o => ∠ABE = 10o
Xét △EBA vuông tại E và △DCA vuong tại D
Có: AB = AC (cmt)
∠BAC là góc chung
=> △EBA = △DCA (ch-gn)
b, Vì △EBA = △DCA (cmt) => AE = AD (2 cạnh tương ứng) và ∠ABE = ∠ACD (2 góc tương ứng)
Ta có: AD + BD = AB và AE + EC = AC
Mà AD = AE (cmt) ; AB = AC (cmt)
=> BD = EC
Xét △BDO vuông tại D và △CEO vuông tại E
Có: BD = EC (cmt)
∠DBO = ∠ECO (cmt)
=> △BDO = △CEO (cgv-gnk)
=> BO = OC (2 cạnh tương ứng)
Xét △BAO và △CAO
Có: AB = AC (cmt)
BO = OC (cmt)
AO là cạnh chung
=> △BAO = △CAO (c.c.c)
=> ∠BAO = ∠CAO (2 góc tương ứng)
Mà AO nằm giữa AB, AC
=> AO là tia phân giác ∠BAC
c, Sửa đề: Gọi BM và CN.... góc kề bù với ∠ABC và ∠ACB
Gọi góc kề bù với ∠ABC và ∠ACB lần lượt là: ∠CBx và ∠BCy
Ta có: ∠ABC + ∠CBx = 180o (2 góc kề bù) và ∠ACB + ∠BCy = 180o (2 góc kề bù)
Mà ∠ABC = ∠ACB (cmt)
=> ∠CBx = ∠BCy (1)
Vì BM là phân giác CBx => ∠CBM = ∠MBx = ∠CBx : 2 (2)
Vì CN là phân giác ∠BCy => ∠BCN = ∠NCy = ∠BCy : 2 (3)
Từ (1) ; (2) ; (3) => ∠BCN = ∠CBM
Xét △BCF có: ∠BCF = ∠FBC (cmt) => ∠BCF cân tại F => BF = FC
Xét △ABF và △ACF
Có: AB = AC (cmt)
BF = FC (cmt)
AF là cạnh chung
=> △ABF = △ACF (c.c.c)
=> ∠BAF = ∠CAF (2 góc tương ứng)
=> AF là tia phân giác góc BAC
Mà AO là tia phân giác góc BAC
=> AF ≡ AO
=> 3 điểm A, O, F thẳng hàng
Cảm ơn bạn Nhật Hạ nha \(\omega\)