Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, Vì ^xAm và ^xAB là 2 góc kề bù
=> ^xAm + ^xAB = 180o
=> 75o + ^xAB = 180o
=> ^xAB = 180o - 75o
=> ^xAB = 105o
Ta có: ^xAB = ^yBA = 105o
Mà 2 góc này ở vị trí so le trong
nên Ax // By (đpcm)
b, Ta có: ^yBC + ^yBA + ^ABC = 360o
=> ^yBC + 105o + 90o = 360o
=> ^yBC = 360o - 105o - 90o
=> ^yBC = 165o
Ta có: ^yBC = ^BCz = 165o
Mà 2 góc này ở vị trí so se trong
nên By // Cz (đpcm)
c, Ta có: Ax // By và By // Cz
=> Ax // Cz (vì cùng song song với By) (đpcm)
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
ID // KP // MN
=> IKP và DIK là 2 góc trong cùng phía bù nhau
=> PKM và KMN là 2 góc trong cùng phía bù nhau
=> PKM + KMN = 180o
=> PKM + 150o = 180o
=> PKM = 30o
=> IKP + DIK = 180o
=> IKP + 130o = 180o
=> IKP = 50o
IKP + PKM = IKM
=> 50o + 30o = IKM
=> IKM = 80o
C= 0
chi tiết : 8 = 2^3 suy ra 8^13 = 2^39
9 = 3^2 suy ra 9^15 = 3^30
bạn thay vào triệt tiêu là ra -2/3 + 2/3 = 0
B E D F C A 50 40 140 H
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
4.6
Ta có: \(\widehat{ABC}+\widehat{DCB}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD