Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm câu A = ... nha
ta có A = 3 + 33 + 35 + ...+31991
A = ( 3 + 33 + 35 ) + ( 37 + 3 9 + 311 ) + ... + ( 31987 + 31989 + 1991 )
A = 3 . (1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31987 . ( 1 + 3 + 32 )
A = 3 . 13 + 37 . 13 + ... + 31987. 13
A = 13 . ( 3 + 37 + ... + 31987 ) ( VÌ 13 CHIA HẾT CHO 13 )
=> A CHIA HẾT CHO 13
\(C=3+3^3+3^5+.....+3^{1991}.\)
\(=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+.....+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3.\left(1+3^2+3^4+3^6\right)+3^9\left(1+3^2+3^4+3^6\right)+....+3^{1985}\left(1+3^2+3^4+3^6\right)\)
\(=3.820+3^9.820+....+3^{1985}.820\)
\(=820\left(3+3^9+....+3^{1985}\right)\)
\(=41.20\left(3+3^9+...+3^{1985}\right)\)
\(\Rightarrow C⋮41\)
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991
C = ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^ 11 ) + ... + ( 3^1987 + 3^1989 + 3^1991 )
C = 273 + 3^6 . ( 3 + 3^3 + 3^5 ) + ... + 3^1986 . ( 3 + 3^3 + 3^5 )
C = 273 + 3^6 . 273 + ... + 3^1986 . 273
C = 273 . ( 3^6 + ... + 3^1986 )
C = 21 . 13 . ( 3^6 + ... + 3^1986 ) chia hết 13
C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991
C = ( 3 + 3^3 + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^ 13 + 3^15 ) + ... + ( 3^1985 + 3^1987 + 3^1989 + 3^1991 )
C = 2460 + 3^8 . ( 3 + 3^3 + 3^5 + 3^7 ) + .... + 3^1984 . ( 3 + 3^3 + 3^5 + 3^7 )
C = 2460 + 3^8 . 2460 ... + 3^1984 . 2460
C = 2460 . ( 3^8 + ... + 3^1984 )
C = 60 . 41 . ( 3^8 + ... + 3^1984 ) chia hết 41
C=3.1+(33.1+33.32)....(31989.1+31989.32)
C=3.1+33(1+32)......31989(1+32) [ta có (1991-1) :2=995cặp]
C=3.1+33.10+...+31989.10
C=(3+10).(33+...31989)
C=13.(33.31989)
vậy c chia hết cho 13 còn câu b cậu làm tương tự nhé!
có thể câu a mình làm sai. mong cậu thứ lỗi