Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
a. \(2n=2\left(n+1\right)-2\text{ là bội của }n+1\)khi \(2\text{ là bội của }n+1\)
\(\Leftrightarrow n+1\in\left\{\pm1,\pm2\right\}\Rightarrow n\in\left\{-3,-2,0,1\right\}\)
b. \(2n+3=2\left(n-2\right)+7\text{ là bội của }n-2\text{ khi 7 là bội của }n-2\)
\(\Leftrightarrow n-2\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-5,1,3,9\right\}\)
a.
(-2)4.17.(-3)0.(-5)6.(-12n)
=16.17.1.15625.-1
=(16.15625).[1.(-1)].17
=250000.(-1).17
=4250000
b.3(2x2-7)=33
2x2-7 =33:3
2x2-7 =11
2x2 =11+7
2x2 =18
x2 =18:2
x2 =9
x2 =\(\left(\pm3^2\right)\)
\(\Rightarrow\) TH1: x2 =32 TH2: x2 =(-3)2
\(\Rightarrow\) x =3 \(\Rightarrow\)x =-3
Vậy x\(\in\left\{3;-3\right\}\)
Gọi x là ƯC của n+3 và 2n+5
=> x là ƯC của 2(n+3)=2n+6 và 2n+5
=> x là Ư của (2n+6)-(2n+5) = 2n+6-2n-5=1
=> x=1
Vậy ƯC(n+3;2n+5)=1
học tốt
a) ta có: 4n-7 chia hết cho n -1
=> 4n - 4 - 3 chia hết cho n - 1
4.(n-1) - 3 chia hết cho n - 1
mà 4.(n-1) chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3)={1;-1;3;-3}
...
rùi bn tự lập bảng xét giá trị nha
b) ta có: 5n -8 chia hết cho 4-n
=> 12 - 20 + 5n chia hết cho 4 -n
12 - 5.(4-n) chia hết cho 4 -n
mà 5.(4-n) chia hết cho 4 -n
=> 12 chia hết cho 4-n
=> ...
a) Ta có : \(n+3⋮n+2\)
\(\Rightarrow\left(n+2\right)+1⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)
Ta có bảng sau :
n+2 | 1 | -1 |
n | -1 | -3 |
Mà \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)
b) \(2n+9⋮n-3\)
\(\Rightarrow2\left(n-3\right)+15⋮n-3\)
Mà \(2\left(n-3\right)⋮n-3\)
\(\Rightarrow15⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lại có : \(n\in N\)
Ta có bảng sau :
n-3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
n | 4 (tm) | 2 (tm) | 6 (tm) | 0 (tm) | 8 (tm) | -2 (loại) | 18 (tm) | -12 ( loại ) |
Vậy \(n\in\left\{4;2;6;0;8;18\right\}\)
a) \(n^2+1⋮n-1\Leftrightarrow n^2-1+2⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+2⋮n-1\Leftrightarrow2⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{1;2\right\}\Leftrightarrow n\in\left\{2;3\right\}.\)
b) \(20⋮n\Leftrightarrow n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}.\)
c)\(28⋮n-1\Leftrightarrow n-1\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\Leftrightarrow n\in\left\{2;3;5;8;15;29\right\}.\)
2,
a) \(H=3^2+3.17+34.3^3⋮3;H>3\)=> H có nhiều hơn 2 ước => Tổng H là hợp số.
b) \(I=7+7^2+7^3+7^4+7^5⋮7;I>7\)=> H có nhiều hơn 2 ước => Tổng I là hợp số.
c) Ta dễ dàng thấy A có nhiều hơn 2 ước => A là hợp số.
d) \(B=147.247.347-13=147.13.19.347-13⋮13;B>13\)=> B có nhiều hơn 2 ước => B là hợp số.
1 b) 20 \(⋮\)n
=> n \(\in\)Ư(20)
=> n \(\in\left\{\pm1;\pm2;\pm4\pm5;\pm10;\pm20\right\}\)
c) 28 \(⋮\)n - 1
=> n - 1 \(\in\)Ư(28)
=> n - 1 \(\in\left\{\pm1\pm2\pm4\pm7\pm14\pm28\right\}\)
Lập bảng xét 12 trường hợp
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 7 | -7 | 14 | -14 | 28 | -28 |
n | 2 | 0 | 3 | -1 | 5 | -3 | 8 | -6 | 15 | -13 | 29 | -27 |
=> n \(\in\){2;0;3;-1;5;-3;8;-6;15;-13;29;-27}
2 a) H = 32 + 3.17 + 34.33
= 3.3 + 3.17 + 34.32.3
= 3.(3 + 17 + 34.32) \(⋮\)3
=> H là hợp số
b) I = 7 + 72 + 73 + 74 + 75
= 7 + 7.7 + 7.72 + 7.73 + 7.74
= 7.(1 + 7 + 72 + 73 + 74) \(⋮\)7
=> I là hợp số
c) A = 1.3.5.7....13.20
= 5.(1.3.7...13.20) \(⋮\)5
=> A là hợp số
B = 147.247.347 - 13
= 147.13.19.347 - 13
= 13.(147.19.347 - 1) \(⋮\)13
=> B là hợp số
Đề kiểu j kia