Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.4 + 4.7 + 7.10 + 10.13 + ... + 61.64
1.4.9 = 1.4.(7 + 2) = 1.4.7 + 1.4.2
4.7.9 = 4.7.(10 - 1) = 4.7.10 - 1.4.7
7.10.9 = 7.10.(13 - 4) = 7.10.13 - 4.7.10
10.13.9 = 10.13.(16 - 7) = 10.13.16 - 7.10.13
.......................................................................
61.64.9 = 61.64.(67 - 58) = 61.64.67 - 58.61.64
Cộng vế với vế ta có:
1.4.9 + 4.7.9 + 7.10.9 +...+ 61.64.9 = 1.4.2 + 61.64.67
9(1.4 + 4.7 + 7.10+ ...+ 61.64) = 261576
1.4 + 4.7 + 7.10 +...+ 61.64 = 261576 : 9
1.4 + 4.7 + 7.10 + ... + 61.64 = 29064
A = \(\dfrac{15}{1.4}\) + \(\dfrac{15}{4.7}\) + \(\dfrac{15}{7.10}\) + ... + \(\dfrac{15}{61.64}\)
A = \(5.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}...+\dfrac{3}{61.64}\right)\)
A = 5.( \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... + \(\dfrac{1}{61}\) - \(\dfrac{1}{64}\))
A = 5.( \(\dfrac{1}{1}\) - \(\dfrac{1}{64}\))
A = 5. \(\dfrac{63}{64}\)
A = \(\dfrac{315}{64}\)
\(=-\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{61}-\dfrac{1}{64}\right)=-\dfrac{1}{63}\)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)
\(A=1-\dfrac{1}{67}\) < 1
=> A<1
Ta có:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)
\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)
\(=3.\left(1-\dfrac{1}{67}\right)\)
\(=3.\dfrac{66}{67}\)
\(=\dfrac{198}{67}\)
Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)
Vậy \(A>1\)
=2/3(3/1*4+3/4*7+...+3/97*100)
=2/3(1-1/4+1/4-1/7+...+1/97-1/100)
=2/3*99/100
=198/300
=66/100
=33/50
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
Ta có :
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(=\)\(\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\)\(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\)\(\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(=\)\(\frac{2}{3}.\frac{102}{103}\)
\(=\)\(\frac{68}{103}\)
Chúc bạn học tốt ~
\(C=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+........+\frac{3}{61.64}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{61}-\frac{1}{64}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{64}\right)\)
\(=\frac{2}{3}.\frac{63}{64}\)
\(=\frac{21}{32}\)
\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{61.61}\)
\(=2.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{61.64}\right)\)
\(=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{61}-\frac{1}{64}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{64}\right)\)
\(=\frac{2}{3}.\frac{63}{64}\)
\(=\frac{21}{32}\)