Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>2A=2(1/2x4+1/4.6+1/6.8+1/8.10+1/10.12+1/12.14)
=> 2A=2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12 + 2/12.14
=> 2a =1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
=> 2A =1-1/7
=>2A=16/17
=> A= 8/17
Mình chắc chắn . Chúc bạn học tốt
\(A=\frac{1}{2.4}\)\(+\frac{1}{4.6}\)\(+\frac{1}{6.8}\)\(+\frac{1}{8.10}\)\(+\frac{1}{10.12}\)\(+\frac{1}{12.14}\)
\(\Rightarrow2A=2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)
\(\Rightarrow2A=\frac{6}{14}\)
\(\Rightarrow A=\frac{3}{14}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)
Gọi biều thức trên là A, ta có:
A=(1/2.4+1/4.6+1/6.8+1/8.10+1/10.12)x=2
2A=(2/2.4+2/4.6+2/6.8+2/8.10+2/10.12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/12)x=2
2A=5/12x=2
=>A=5/24x=1
=>x=1:5/24=24/5
=>1/2.(5/12).x=1
5/24.x=1
x=1:5/24
x=24/5
lưu ý, 1/2.5/12 là tính xong phần 1/2.4 +...+1/10.12 rùi nhé
\(B=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+...+\frac{3}{20.22}\)
\(=\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+...+\frac{1}{20.22}\)
\(=\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
\(=\frac{1}{4}-\frac{1}{22}\)
\(=\frac{9}{44}\)
\(\frac{1.4}{4.6}+\frac{2.5}{6.8}+...+\frac{48.51}{98.100}\)
=> \(\frac{1}{4}.\left(\frac{1.4}{2.3}+\frac{2.5}{3.4}+...+\frac{48.52}{49.50}\right)\)
=> \(\frac{1}{4}.\left(\frac{2.3-2}{2.3}+\frac{3.4-2}{3.4}+...+\frac{49.50-2}{49.50}\right)\)
=> \(\frac{1}{4}.\left(1-\frac{2}{2.3}+1-\frac{2}{3.4}+...+1-\frac{2}{49.50}\right)\)
=> \(\frac{1}{4}.\left[48-2.\left(\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{49.50}\right)\right]\)
=> \(\frac{1}{4}.\left[48-2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\right]\)
=> \(\frac{1}{4}.\left[48-2.\left(\frac{1}{2}-\frac{1}{50}\right)\right]\)
=> \(\frac{1}{4}.\left[48-2.\frac{12}{25}\right]\)
=> \(\frac{1}{4}.\frac{1176}{25}=\frac{249}{25}\)
\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+\frac{5}{8\cdot10}+...+\frac{5}{298\cdot300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\cdot\frac{37}{150}\)
\(=\frac{37}{60}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
= \(\frac{5}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{298.300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\frac{37}{150}\)
= \(\frac{37}{60}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
\(2S=\frac{1}{2}-\frac{1}{10}\)
\(2S=\frac{2}{5}\)
\(S=\frac{2}{5}:2\)
\(S=\frac{1}{5}\)
S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
\(\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
=\(3.\left(\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)
=\(\frac{3}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\right)\)
=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)
=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
=\(\frac{3}{2}.\left(\frac{7}{28}-\frac{2}{28}\right)\)
=\(\frac{3}{2}.\frac{5}{28}=\frac{15}{56}\)
\(\sqrt[]{\frac{ }{ }\frac{ }{ }\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^2}\)