Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)
\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)
\(=\dfrac{2\sqrt{x}}{x-y}\)
\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)
\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)
Cho hai số thực x, y thỏa x^2+xy+y^2=1. TÌm giá trị lớn nhất của biểu thức: P=x^3*y+y^3*x