K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

1) \(\frac{x^2-1}{A}=\frac{x+1}{x^2+y-2}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{A}=\frac{x+1}{x^2+y-2}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{A}=\frac{\left(x+1\right)\left(x-1\right)}{\left(x^2+y-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\left(x^2+y-2\right)\left(x-1\right)\)

\(\Leftrightarrow A=x^3+xy-x^2-y-2x+2\)

Vậy A = x3 + xy - x2 - y - 2x + 2

2) \(\frac{x^3+8}{x^2-xy+2x-2y}=\frac{x^2-2x+4}{A}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x-y\right)\left(x+2\right)}=\frac{x^2-2x+4}{A}\)

\(\Leftrightarrow\frac{x^2-2x+4}{x-y}=\frac{x^2-2x+4}{A}\)

\(\Leftrightarrow A=x-y\)

Vậy A = x - y

29 tháng 6 2023

\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)

\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)

\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)

\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)

1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy

2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3

=6x^2y

3: =(x+y-x+y)^2=(2y)^2=4y^2

4: =(2x+3-2x-5)^2=(-2)^2=4

5: =18^8-18^8+1=1

23 tháng 9 2019

1/ \(\left(x^2+1\right)\left(x-2\right)+2x=4.\)

\(\left(x^2+1\right)\left(x-2\right)+2x-4=0\)

\(\left(x^2+1\right)\left(x-2\right)+\left(2x-4\right)=0\)

\(\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+1+2\right)=0\)

\(\left(x-2\right)\left(x^2+3\right)=0\)

TH1:\(x-2=0\Rightarrow x=2\)

TH2: \(x^2+3=0\)

\(\Rightarrow x^2=-3\)(vô lí)

\(\Rightarrow x\in\left\{2\right\}\)

2/ \(A=a\left(b-3\right)-b\left(b-1\right)\)

đề sai f ko ạ, do mik đâu thấy C mà bạn lại cho đề c=2???

\(B=xy\left(x+y\right)-2x-2y\)

\(B=xy\left(x+y\right)-\left(2x+2y\right)\)

\(B=xy\left(x+y\right)-2\left(x+y\right)\)

\(B=\left(x+y\right)\left(xy-2\right)\)

có xy=8 ; x+y=7

\(\Rightarrow B=\left(x+y\right)\left(xy-2\right)\)

\(\Rightarrow B=8\cdot\left(8-2\right)=8\cdot6=48\)

6 tháng 4 2017

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

6 tháng 4 2017

Mà bài này hình như học ở lớp 7 rồi!lolang

28 tháng 6 2017

Rút gọn phân thức

18 tháng 6 2018

1.

(2x+1)(x-2)-x(2x+3)+10

= 2x.(x-2)+1(x-2)-x(2x+3)+10

= 2x.x-2x.2+1.x-1.2-x.2x+x.3+10

= 2x2-4x+x-2-2x2+3x+10

= (2x2-2x2)+(-4x+x+3x)+(-2+10)

= 8

Vậy giá trị của biểu thức (2x+1)(x-2)-x(2x+3)+10 không phụ thuộc vào biến x

29 tháng 11 2023

bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)

\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)

Bài 2:

1: \(x^2y^2-8-1\)

\(=x^2y^2-9\)

\(=\left(xy-3\right)\left(xy+3\right)\)

2: \(x^3y-2x^2y+xy-xy^3\)

\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)

\(=xy\left(x^2-2x+1-y^2\right)\)

\(=xy\left[\left(x-1\right)^2-y^2\right]\)

\(=xy\left(x-1-y\right)\left(x-1+y\right)\)

3: \(x^3-2x^2y+xy^2\)

\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)

\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

4: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

5: \(x^2+2x-4y^2+1\)

\(=\left(x^2+2x+1\right)-4y^2\)

\(=\left(x+1\right)^2-4y^2\)

\(=\left(x+1-2y\right)\left(x+1+2y\right)\)

6: \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự