K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19

Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\)  ⇒ a + 55 \(\in\) BC(6; 19) 

6 = 2.3; 19 = 19;       BCNN(6; 19) = 2.3.19 = 114

⇒ BC(6; 19) = {0; 114; 228; 342;...;}

\(\in\) { - 55; 59; 173;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 59 

a + 55 \(\in\) B(114)

⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)

14 tháng 11 2023

                      Bài 2: 

Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21

  Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)

    5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105

      ⇒BC(5; 21) = {0; 105; 210;...;}

         a+ 39 \(\in\) {0; 105; 210;...;}

     a \(\in\) {-39; 66; 171;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 66

a + 39 ⋮ 105

⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)

 

     

 

                

    

6 tháng 10 2016

a) Gọi số nhỏ nhất cần tìm là a

Do số cần tìm chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4

\(\Rightarrow a-1⋮3;a-2⋮4;a-3⋮5;x-4⋮6\)

\(\Rightarrow a-1+3⋮3;a-2+4⋮4;a-3+5⋮3;a-4+6⋮6\)

\(\Rightarrow a+2⋮3;4;5;6\)

\(\Rightarrow a+2\in BC\left(3;4;5;6\right)\)

Mà BCNN(3;4;5;6) = 60 \(\Rightarrow a+2\in B\left(60\right)\)

Ta có: a + 2 chia hết cho 60; a chia hết cho 13

=> a + 2 + 180 chia hết cho 60; a + 182 chia hết cho 13

=> a + 182 chia hết cho 60; 13

\(\Rightarrow a+182\in BC\left(60;13\right)\)

Mà (60;13)=1 => BCNN(60;13) = 780

\(\Rightarrow a+182\in B\left(780\right)\)

=> a = 780.k + 598 \(\left(k\in N\right)\)

Để a nhỏ nhất thì k nhỏ nhất => k = 0

=> a = 780.0 + 598 = 598

Vậy số nhỏ nhất cần tìm là 598

b) Theo câu a thì dạng chung của các số tự nhiên có tính chất trên (như đề bài) là: 780.k + 598 \(\left(k\in N\right)\)

DD
21 tháng 10 2021

Gọi số tự nhiên đó là \(n\).

Khi đó \(n\)chia cho \(3,4,5\)có dư lần lượt là \(2,3,4\)nên \(n+1\)chia hết cho cả \(3,,4,5\)nên \(n+1\)chia hết cho \(BCNN\left(3,4,5\right)=60\).

\(n+1=60k\Leftrightarrow n=60k-1,k\inℤ\)

\(60k-1=17l,l\inℤ\Leftrightarrow\hept{\begin{cases}k=17t+2\\l=60t+7\end{cases}}\)

suy ra \(n=17l=17\left(60t+7\right)=1020t+119\)

.

12 tháng 8 2016

a/ gọi a là số cần tìm.

Nếu a chia cho 2, 3, 4, 5, 6 đều dư 1, vậy khi a trừ cho 1 sẽ chia hết cho 5 số đó và còn là bội chung của chúng, vậy ta có:

2 = 2; 3 = 3; 4 = 22; 5 = 5; 6 = 2.3.

=> BCNN (2, 3, 4, 5, 6) = 22.3.5 = 60.

Khi 60 + 1 tức là a + 1 sẽ ko chia hết cho 7, ta tiếp tục tìm số đó:

BC (2, 3, 4, 5, 6) + 1 = {121; 181; 241; 301...}

Ta thấy số 301 là số nhỏ nhất chia hết cho 7.

Vậy số cần tìm là 301.

b/ gọi số tổng quát là n, ta có:

n - 1 chia hết cho 60

=> n - 1 - 300 chia hết cho 60

=> n - 301 chia hết cho 60

Mà n chia hết cho 7

=> 301 chia hết cho 7

=> n - 301 chia hết cho 7

=> n - 1 chia hết cho 60.7 = 420

=> n - 1 = 420k

=> n = 420k + 1 (k ϵ N).

27 tháng 6 2016

http://olm.vn/hoi-dap/question/113689.html

25 tháng 12 2016

việc gì phải làm

25 tháng 12 2016

Bạn nói thế là thế nào hả Nguyễn Thị Thanh Huyền?

11 tháng 11 2015

a)gọi số cần tìm là x

=> x - 1 chia het cho 3=> x-1+3 chia het cho 3 => x+2  chia het cho 3

x-2 chia het cho 4 => x-2+4 chia het cho 4 => x+2 chia het cho 4

x-3 chia het cho 5 => x-3+5 chia het cho 5 => x+2 chia het cho 5

x-4 chia het cho 6 => x-4+6 chia het cho 6 => x+2 chia het cho 6

=> x+2la BCNN(3;4;5;6)

ta co 3=3;4=22;5=5;6=2.3

=>BCNN(3;4;5;6)=22.3.5=60

=>x+2=60=>x=58