Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\) \(ĐKXĐ:x\ge0;x\ne1\)
\(A=\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}\right).\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)
\(A=\left(\frac{2x+1-x+\sqrt{x}}{\sqrt{x^3}-1}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(A=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(A=\frac{1}{\sqrt{x}-1}\left(\sqrt{x}-1\right)^2\)
\(A=\sqrt{x}-1\)
vậy \(A=\sqrt{x}-1\)
b) Theo câu a ta có : \(A=\sqrt{x}-1\)với \(ĐKXĐ:x\ge0;x\ne1\)
Theo bài ra \(A=3\Leftrightarrow\sqrt{x}-1=3\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\) ( TM ĐKXĐ \(x\ge0;x\ne1\))
vậy \(x=16\)thì \(A=3\)
ĐKXĐ: \(x>0;x\ne1;x\ne9\)
\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{x-1-x+3}\)
\(=\frac{1}{\sqrt{x}}.\frac{\sqrt{x}-3}{2}\)
\(=\frac{\sqrt{x}-3}{2\sqrt{x}}\)
Để B < 0 thì
\(\frac{\sqrt{x}-3}{2\sqrt{x}}< 0\)
\(\Rightarrow\)\(\sqrt{x}-3\)và \(2\sqrt{x}\)trái dấu mà
\(2\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3< 0\)
\(\Rightarrow\sqrt{x}< 3\)
\(\Rightarrow x< 9\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
B=\(\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)ĐK :\(x>0;x\ne1\)
B=\(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
B=\(\frac{\left(x+\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
B=\(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
B=\(\sqrt{x}-1\)
b, Để B=3 =>\(\sqrt{x}-1=3\)
<=>\(\sqrt{x}=4\)
<=> x=16 (nhận)
Vậy x =16 thì B=3