K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

Để biểu thức trên có nghĩa thì:

2+x>0 và 5-x >0 hoặc 2+x<0 và 5-x<0

<=>x>-2 và x<5 hoặc x<-2 và x>5

<=>-2<x<5

Vậy để biểu thức xác định thì -2 < x < 5

10 tháng 7 2016

\(\sqrt{\frac{x-2}{x+3}}\) xác định

<=> \(\frac{x-2}{x+3}\ge0\)

<=> \(x-2\ge0\)

<=> \(x\ge2\)

Vậy với mọi \(x\ge2\)thì biểu thức xác định.

10 tháng 7 2016

Biểu thức xác định khi:

\(\hept{\begin{cases}x+3\ne0\\\frac{x-2}{x+3}\ge0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ge2\\x< -3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x< -3\end{cases}}\)

29 tháng 10 2018

Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)

Chúc bạn học tốt ~ 

29 tháng 10 2018

mn làm giúp mk vs

28 tháng 7 2018

a) điều kiện xác định : \(x\ge2;x\ne5\)

b) \(P=\dfrac{x-5}{\sqrt{x-2}-\sqrt{3}}=\dfrac{\left(\sqrt{x-2}-\sqrt{3}\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{\sqrt{x-2}-\sqrt{3}}\)

\(\Leftrightarrow P=\sqrt{x-2}+\sqrt{3}\)

c) ta có : \(P=\sqrt{x-2}+\sqrt{3}\ge\sqrt{3}\) \(\Rightarrow\) GTNN của \(P\)\(\sqrt{3}\)

dấu "=" xảy ra khi \(x=2\)

15 tháng 6 2016

http://olm.vn/hoi-dap/question/104313.html

coi hỉu j ko tui đang mò

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc