Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2+2x-4y+6z=-14\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\Leftrightarrow\begin{cases}x+1=0\\y-2=0\\z+3=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-1\\y=2\\z=-3\end{cases}\)
\(\Rightarrow x+y+z=-1+2-3=-2\)
x2+2x+1+y2-4y+4+z2+6z+9=0
(x+1)2+(y-2)2+(z+3)2=0
(x+1)2 \(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)
mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha
từ đó tính đc x,y,z
\(^{x^2+y^2+z^2+2x-4y+6z=-14}\)
\(=x^2+2x+1+y^2-4y+4+z^2+6z+9=-14+14=0\)\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)\(\Rightarrow\left(x+1\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)\(\Rightarrow x+1=0;y-2=0;z+3=0\)\(\Rightarrow x=-1;y=2;z=-3\Rightarrow x+y+z=-2\)
Ta có:
\(x^2+y^2+z^2-2x+4y-6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2-2x+4y-6z+14=0\)
\(\Leftrightarrow x^2+y^2+z^2-2x+4y-6z+1+4+9=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+\left(z^2-6z+9\right)=0\)\(\Leftrightarrow\left(x^2-2x.1+1^2\right)+\left(y^2+2y.2+2^2\right)+\left(z^2-2z.3+3^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=0\)
Lại có:
\(\left(x+1\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\ge0\)
Dấu "=" chỉ xảy ra khi và chỉ khi \(x-1=y+2=z-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\\z=3\end{matrix}\right.\)
Khi đó: \(x+y+z=1-2+3=2\)
Ta có : \(A=x^2+y^2+z^2-2x-4y+6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\left(1\right)\)
Do \(\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y;\left(z+3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\\z+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\\z=-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=-1+2-3=-2\)
Vậy \(x+y+z=-2\)
điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)
áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)
[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)
=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)
x2+y2+z2+2x-4y+6z=-14
=>x2+y2+z2+2x-4y+6z+14=0
=>(x2+2x+1)+(y2-4y+4)+(z2+6z+9)=0
=> (x+1)2+(y-2)2+(z+3)2=0
ta có:
(x+1)2≥0
(y-2)2≥0
(z+3)2≥0
=>(x+1)2+(y-2)2+(z+3)2≥0
dấu "=" xảy ra khi và chỉ khi ; x+1=y-2=z+3=0
=>\(\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
=> x+y+z=-1+2+(-3)=-2