Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 5x2 + 2y2 + 4xy - 2x + 4y + 2022
= (2x2 + 4xy + 2y2) + 4(x + y) + 2 + (3x2 - 6x + 3) + 2017
= 2(x + y)2 + 4(x + y) + 2 + 3(x - 1)2 + 2017
= 2(x + y + 1)2 + 3(x - 1)2 + 2017 \(\ge\)2017
=> Min A = 2017
\(5x^2+2y^2+4xy-2x+4y+2022\)
\(=\left(4x^2+4x+y^2\right)+\left(y^2+4y+4\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2017\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\y+2=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy \(Min_A=2017\Leftrightarrow x=1;y=-2\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Ta có x = 2020
=> x + 1 = 2021
A = x2021 - 2021x2020 + .... + 2021x - 2021
= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)
= x2021 - x2021 - x2020 + .... + x2 + x - x + 1
= 1
Vậy A = 1
Ta có : \(x=2020\Rightarrow x+1=2021\)
\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)
= x2021 - x2021 - x2020 + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x2 + x - 2021 = x - 2021
mà x = 2020 hay 2020 - 2021 = -1
Vậy với x = 2020 thì A = -1
B