Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
ban đầu bản phải viết phương trình ra mới làm được loại này :
Li73 +11p => 2. 42X (heli)
sau đó dùng ct: ΔW=(mtrước -msau).c2 => 1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên.
\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)
Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)
Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)
Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là:
\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)
Đáp án: C
Năng lượng tỏa ra sau mỗi phân hạch:
DE = (mU + mn - mI - mY - 3mn)c2 = 0,18878 uc2 = 175,84857 MeV = 175,85 MeV
Khi 1 phân hạch kích thích ban đầu sau 5 phân hạch dây chuyền số phân hạch xảy ra là
1 + k1 + k2 + k3 + k4 = 1 + 2 + 4 + 8 + 16 = 31
Do đó số phân hạch sau 5 phân hạch dây chuyền từ 1010 phân hạch ban đầu N = 31.1010
Năng lượng tỏa ra: E = N.DE = 31.1010 x175,85 = 5,45.1013 MeV.
- Năng lượng tỏa ra sau mỗi phân hạch:
- Khi 1 phân hạch kích thích ban đầu sau 5 phân hạch dây chuyền số phân hạch xảy ra là:
1 + k1 + k2 + k3 + k4 = 1 + 2 + 4 + 8 + 16 = 31
- Do đó số phân hạch sau 5 phân hạch dây chuyền từ 1010 phân hạch ban đầu N = 31.1010.
- Năng lượng tỏa ra:
\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)
Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)
=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)
=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)
Áp dụng định luật bảo toàn động lượng
P P P α α p Li
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)
Với \(P^2 = 2mK, m=A.\).
=> \(\alpha = 90^0.\)
Năng lượng tỏa ra sau mỗi phân hạch:
DE = (mU + mn - mI - mY - 3mn)c2 = 0,18878 uc2 = 175,84857 MeV = 175,85 MeV
Khi 1 phân hạch kích thích ban đầu sau 5 phân hạch dây chuyền số phân hạch xảy ra là
1 + k1 + k2 + k3 + k4 = 1 + 2 + 4 + 8 + 16 = 31
Do đó số phân hạch sau 5 phân hạch dây chuyền từ 1010 phân hạch ban đầu N = 31.1010
Năng lượng tỏa ra: E = N.DE = 31.1010 x175,85 = 5,45.1013 MeV
Chọn đáp án C