K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2019

Điều kiện góc cần tính là góc nhọn

\(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow cos^2x=\frac{1}{1+tan^2x}\Rightarrow cosx=\frac{1}{\sqrt{1+tan^2x}}=\frac{4}{5}\)

\(\Rightarrow sinx=\sqrt{1-cos^2x}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}\)

\(\Rightarrow A=\frac{7}{5}\)

23 tháng 6 2019

a)\(\left(\sin x+\cos x\right)^2=\sin^2x+\cos^2x+2\sin x\cdot\cos x\)

\(=1+2\cdot\frac{1}{2}=1+1=2\)

\(\Rightarrow\sin x+\cos x=\sqrt{2}\)

b)\(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cdot\cos^2x\)

\(=1^2-2\cdot\frac{1}{2}^2=1-\frac{1}{2}=\frac{1}{2}\)

c)\(\left|\sin x-\cos x\right|^2=\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x\cdot\cos x=1-2\cdot\frac{1}{2}=1-1=0\)

\(\left|\sin x+\cos x\right|=0\)

NV
23 tháng 6 2019

\(\left(sinx+cosx\right)^2=\frac{25}{16}\Rightarrow sin^2x+cos^2x+2sinxcosx=\frac{25}{16}\)

\(\Rightarrow2sinxcosx=\frac{25}{16}-1=\frac{9}{16}\Rightarrow A=\frac{9}{32}\)

\(B^2=\left(sinx-cosx\right)^2=1-2sinx.cosx=1-\frac{9}{16}=\frac{7}{16}\Rightarrow B=\pm\frac{\sqrt{7}}{4}\)

\(C=\left(sinx+cosx\right)\left(sinx-cosx\right)=\frac{5}{4}.\left(\pm\frac{\sqrt{7}}{4}\right)=\pm\frac{5\sqrt{7}}{16}\)

15 tháng 7 2017

ta co \(sin^2a+cos^2a=1\Rightarrow cosa=0.36\)

\(\frac{sina}{cosa}=tana\Rightarrow tana=\frac{20}{9}\)

\(tana\cdot cotga=1\Rightarrow cotga=\frac{9}{20}\)

câu b tương tự nha cau c \(\frac{sina+cosa}{sina-cosa}=\) bn

23 tháng 6 2019

\(\cos^4x-\sin^4x=\left(\cos^2x-\sin^2x\right)\left(\cos^2x+\sin^2x\right)\)

\(=\cos^2x-\sin^2x=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1\)

(đpcm)

TL

XY=60

Học tốt

Sai mik sorry

12 tháng 11 2021

xem có sai đề ko

23 tháng 6 2019

\(\sin^6x+\cos^6x\\ =\left(\sin^2x\right)^3+\left(\cos^2x\right)^3\\ =\left(\sin^2x+\cos^2x\right)^3-3\sin^2x\cos^2x\left(\sin^2x+\cos^2x\right)\\ =1-3\sin^2x\cos^2x\left(đpcm\right)\)

23 tháng 6 2019

\(sin^6x+cos^6x\)

=\(\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

=\(sin^4x-sin^2x.cos^2x+cos^4x\)

=\(\left(1-2sin^2x.cos^2x\right)-sin^2x.cos^2x\)

=\(1-3sin^2x.cos^2x\)(đpcm)

\(sin^6x+cos^6x\)=\(1-3sin^2x.cos^2x\)