Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=5n+1
b=5k+2
a^2=1 ﴾mod 5﴿
b^2=4 ﴾mod5﴿
﴾a^2+b^2﴿=0 ﴾mod 5﴿
không được dùng thì khai triển ra
a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2
25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5
a=5n+1
b=5k+2
a^2=1 (mod 5)
b^2=4 (mod5)
(a^2+b^2)=0 (mod 5)
không được dùng thì khai triển ra
a^2+b^2=(5n+1)^2+(5k+2)^2
25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5
- Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
- a : 5 dư 2 => a= 5k +2 ( k thuộc N )
- Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4
= 25( t2 + k2 ) + 10( t + 10k ) +5 chia hết cho 5 vì 25( t2 + k2 ) ; 10( t + 10k ) và 5 đều chia hết cho 5
Nên tổng các bình phương của hai số a và b đều chia hết cho 5
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Đặt a=5x+2
b=5y+3
a.b=(5x+2)(5y+3)=25xy+15x+10y + 6=5(5xy+3x+2y+1)+1
Do 5(5xy+3x+2y+1) chia hết cho 5
=>5(5xy+3x+2y+1)+1 chia 5 dư 1
Vậy a . b chia 5 dư 1 với a:5 dư 2 và b:5 dư 3
Ta có: a = 5 x p + 2 (p ∈ N )
Tương tự ta có: b = 5 x q + 3 (q ∈ N )
Theo bài ra ta có: a x b = (5 x p + 2) x (5 x q + 3)
Hay: a x b = 25 x p x q + 10 x q + 15 x p + 6 = 5 x (5 x p x q + 2 x q + 3 x p) + 6
Vì: 5 x (5 x p x q + 2 x q + 3 x p) chia hết cho 5; còn 6 chia cho 5 dư 1
Suy ra: a x b chia cho 5 có số dư là 1
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
Đặt \(a=5k+1;b=5k+2\)
Cần cm:\(a^2+b^2⋮5\)
Ta có:\(a^2+b^2=\left(5k+1\right)^2+\left(5k+2\right)^2\)
\(=25k^2+10k+1+25k^2+20k+4\)
\(=50k^2+30k+5=5\left(10k^2+6k+1\right)⋮5\left(đpcm\right)\)