K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

ta có : \(sin^2x+cos^2x=1\Leftrightarrow\left(sinx+cosx\right)^2-2sinx.cosx=1\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-0,96=1\) \(\Leftrightarrow sinx+cosx=\pm\sqrt{1,96}=\pm1,4\)

ta có : \(sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

th1: \(sinx+cosx=1,4\Rightarrow sin^3x+cos^3x=0,728\)

th2: \(sinx+cosx=-1,4\Rightarrow sin^3x+cos^3x=-0,728\)

vậy ............................................................................................................

21 tháng 10 2023

tan x=2

=>\(\dfrac{sinx}{cosx}=2\)

=>\(sinx=2\cdot cosx\)

\(B=\dfrac{cos^3x+cosx\cdot sin^2x-sin^3x}{sin^3x-cos^3x}\)

\(=\dfrac{cos^3x+cosx\cdot4cos^2x-8cos^3x}{8cos^3x-cos^3x}\)

\(=\dfrac{-3cos^3x}{7cos^3x}=-\dfrac{3}{7}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

9 tháng 9 2019

undefined