Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(\sqrt{2};\sqrt{2}\right)\Rightarrow x=\sqrt{2};y=\sqrt{2}\) Thay vào hàm số \(y=\left(\sqrt{a}-2\right)x\) ta được :
\(\sqrt{2}=\left(\sqrt{a}-2\right)\sqrt{2}\)
\(\Rightarrow\sqrt{a}-2=1\)
\(\Rightarrow\sqrt{a}=3\)
\(\Rightarrow a=9\)
Vậy \(a=9\)
ĐK a > 3
Vì đths đi qua điểm N nên
\(\sqrt{5}=\sqrt{5}.\sqrt{a-3}\)
\(\Leftrightarrow\sqrt{a-3}=1\)
\(\Leftrightarrow a-3=1\)
\(\Leftrightarrow a=4\)(Thỏa mãn ĐK)
Vậy a= 4
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
b. 5x2+7,1=\(\sqrt{49}\)
\(\Rightarrow\)5x2+7,1=7
\(\Rightarrow\)5x2 = 7+7,1
\(\Rightarrow\)5x2 =14,1
\(\Rightarrow\)x2 =\(\dfrac{14,1}{5}\)
\(\Rightarrow\)x =\(\sqrt{\dfrac{14,1}{5}}\)
cho mk 1 tick đúng và câu tiếp thao sẽ hiện ra
A(\(\sqrt{2},\sqrt{2}\)) thuoc dthi \(\Rightarrow\)\(\sqrt{2}=\left(a-2\right)^{\sqrt{2}}\)
\(\left(\sqrt{2}\right)^{\sqrt{2}}=a-2\)
\(\Rightarrow\)\(a=2+\left(\sqrt{2}\right)^{\sqrt{2}}\)