K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2

Thay y=-1 vào (P), ta được:

x^2+4x+2=-1

=>x^2+4x+3=0

=>(x+1)(x+3)=0

=>x=-1 hoặc x=-3

b: Phươngtrình hoành độ giao điểm là:

x^2+(2m+2)x+m^2+m=0

Δ=(2m+2)^2-4(m^2+m)

=4m^2+8m+4-4m^2-4m=4m+4

Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0

=>m>-1

\(\left|x_1-x_2\right|=\sqrt{5}\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

=>(2m+2)^2-4(m^2+m)=5

=>4m^2+8m+4-4m^2-4m=5

=>4m+4=5

=>m=1/4