K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

từ a-b=5

=>a=b+5

Ta có:

\(A=\frac{-a-3}{b+8}-\frac{2b+13}{2a+3}=\frac{-\left(b+5\right)-3}{b+8}-\frac{2b+13}{2.\left(b+5\right)+3}\)

\(=\frac{-b-8}{b+8}-\frac{2b+13}{2b+10+3}=\frac{-\left(b+8\right)}{b+8}-\frac{2b+13}{2b+13}=-1-1=-2\)

Vậy a=-2

17 tháng 5 2016

a-b=5

=> a=5+b

Thay a=5+b vao A

Ta co:

\(A=\frac{-\left(5+b\right)-3}{b+8}-\frac{2b+13}{2\left(5+b\right)+3}\)

\(A=\frac{-b-8}{b+8}-\frac{2b+13}{2b+13}\)

\(A=\frac{-\left(b+8\right)}{b+8}-1=-1-1=-2\)

20 tháng 5 2016

\(a-b=13\Rightarrow a=b+13\)

thay \(a=b+13\) vào biểu thức thì ta có:

\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)

\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)

20 tháng 5 2016

\(a-b=13\) => \(a=b+13\)

Thay \(a=b+13\) vào biểu thức thì ta sẽ có:

\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)

\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)

20 tháng 5 2016

\(=\frac{2a\left(a-b\right)}{2a+13}-\frac{2b-\left(a-b\right)}{2b-13}=\frac{2a+13}{2a+13}-\frac{2b-13}{2b-13}=1-1=0\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

23 tháng 10 2019

Áp dụng dãy tỉ số bằng nhau ta có: 

 \(\frac{2a+b}{c}\)=\(\frac{2b+c}{a}\)=\(\frac{2c+a}{b}\)=\(\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3a+3b+3c}{a+b+c}=3\)

=> \(\frac{2a+b}{c}\)=3

\(\frac{a}{2b+c}=\frac{1}{3}\)

\(\frac{b}{2c+a}=\frac{1}{3}\Rightarrow\frac{3b}{2c+a}=1\)

=> \(A=3+\frac{1}{3}+1=\frac{13}{3}\)

20 tháng 3 2020

Áp dụng tính chất của dãy tỉ số bằng nhau 

\(\Rightarrow\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{3a+3b+3c}{a+b+c}\)\(=\frac{3\left(a+b+c\right)}{a+b+c}\)\(=3\)

 => \(\hept{\begin{cases}\frac{2a+b}{c}=3\\\frac{2b+c}{a}=3\\\frac{2c+a}{b}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a+b=3c\\2b+c=3a\\2c+a=3b\end{cases}}\)

\(\Rightarrow A\)\(=\frac{3c}{c}+\frac{a}{3a}+\frac{3b}{3b}=3+\frac{1}{3}+1=\frac{13}{3}\)

\(A=\frac{13}{3}\)

4 tháng 1 2017

Thay a=-3b vào M 

\(DK.a\ne0;b\ne0\)

\(M_b=\frac{2a+b}{a-b}-\frac{2a-b}{a+2b}=\frac{-6b+b}{-3b-b}-\frac{-6b-b}{-3b+2b}=\frac{5}{4}-\frac{-7}{-1}=-\frac{23}{4}\)

20 tháng 3 2018

\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN 

\(\Rightarrow\)\(6-x=1\)

\(\Rightarrow\)\(x=5\)

Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)

Vậy \(A_{max}=2\) khi \(x=5\)

Chúc bạn học tốt ~