Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(a,b)
=> a chia hết cho d
b chia hết cho d
=> 2k + 1 chia hết cho d
3k + 2 chia hết cho d
=> 3(2k + 1) = 6k + 3 chia hết cho d
2(3k + 2) = 6k + 4 chia hết cho d
=> (6k + 4) - (6k + 3) = 6k + 4 - 6k - 3 = 1 chia hết cho d
mà d > 0 => d = 1
Vậy ƯCLN(a,b) = 1
Xét tập hợp 1 :
x chia hết cho 2 và 3 => x chia hết cho 6
A = { 6; 12; 18; ...; 60; 96 }
Vậy,......
Số hạng chia hết cho a có dạng x = a.k (k ∈ N)
Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)
a) Xét trên tử
Ta có :
1.5.6 + 2.10.12 + 4.20.24 + 9.45.54
= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6
= 1.5.6 ( 2^3 + 4^3 + 9^3 )
Xét mẫu
Ta có :
1.3.5 + 2.6.10 + 4.12.20 + 9.27.45
= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5
= 1.3.5 ( 2^3 + 4^3 + 9^3 )
Ta có
A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2
b) Ta có :
k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )
Ta có :
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )
\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3
3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
số nguyên tố là prime number mà bạn chứ sao lại là số element?
ví dụ là 3k + 1 = 3 . 4 + 1 = 13
13 khi chia cho 3 thì còn dư 1 3k + 2 cũng vậy , 2 là số dư của phép tính đó
Oki, thank you nha!
CHÚC BẠN THI GIỮA KÌ TỐT