K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời : Trong toán học, định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.

\(\downarrow\)

21 tháng 5 2019

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

∆ABC vuông tại A.

=>  BC2=AB2+AC2

Học tốt

8 tháng 4 2021

A B C H

Theo định lý Pytago ta có:

\(AB^2=BH^2+AH^2\)

\(AC^2=CH^2+AH^2\)

Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)

\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)

=> đpcm

16 tháng 8 2018

Dùng phản chứng:

- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.

Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.

(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)

Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)

Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)

Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:

- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'

- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.

18 tháng 3 2020

Định lý Pytago được sử dụng cho loại tam giác vuông.

 

_Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.

 CÔNG THỨC :

\(^{a^2+b^2=c^2}\) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)   

                     k cho mk nha!Hok tốt !!!

18 tháng 3 2020

Hình vẽ bạn tự thêm điểm nha!

8 tháng 1 2020

H ở chỗ nào vậy bạn?

19 tháng 1 2020

mình xin lỗi, mình chép nhầm đề

17 tháng 4 2022

2-C

17 tháng 4 2022

1. ko rõ câu hỏi

2. A

Câu 1: 180o

Câu 2: Tam giác cân

Câu 3: BC=EF

Câu 4: AB2+AC2=BC2

P/s: Ủa chỉ ghi kq thoy ạ???o.o tưởng phải giải chi tiết chứ:)

23 tháng 4 2020

câu 1 ; trong tam giác ABC có A^+B^+C^=180 độ 

câu 2 : tam giác có 1 cạnh bằng nhau là tam giác cân 

câu 3 : thêm điều kiện AC=DF

câu 4: trong tam giác vuông bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông ( a2+b2=c2)

5 tháng 1 2022

bt chớt lìn

6 tháng 1 2022

Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.

Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.

Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)

Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:

Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)

Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.

\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)

\(\Rightarrow\Delta ABC\)vuông tại B

17 tháng 4 2022

Câu 1. Cho tam giác MNP cân tại M, nếu góc M=50độ thì góc ở đáy bằng 
A. 130 độ
B. 40 độ 
C. 100 độ
D. 65 độ 
Câu 2. Cho tam giác MNP vuông tại M, theo định lý Pytago ta có: 
A. NM2=MP2+NP2
B. NP2=MN2+MP2
C. MP2=MN2+NP2
D. NP2=MN2-MP2
Câu 3. Nếu tam giác ABC có AC>AB thì theo quan hệ giữa góc và cạnh đối diện trong tam giác 
A. Góc A> góc B
B. Góc A> góc C
C. Góc C> góc A
D. Góc B> góc C

Sao để lm ra đc vậy ạ