K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

góc IMN = góc IPN

O nằm trên trung trực của MN và PE

=>OM=ON; OP=OE

Xét ΔMOP và ΔNOE có

OM=ON

MP=NE

OP=OE

=>ΔMOP=ΔNOE

24 tháng 2 2021

\(MN+MP=34\)

\(MN-MP=14\)

\(\Rightarrow2MP=34-14=20\)

\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)

\(Pytago:\)

\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)

 

Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=10^2+24^2=676\)

hay NP=26(cm)

Vậy: MN=10cm; MP=24cm; NP=26cm

13 tháng 2 2022

MP + NP >MN; MN – MP <PN

XY<XT + TY 

XY>XT - TY

Chúc em học tốt

14 tháng 2 2022

Giups e vs ạ, e đg có 1 câu cần giải gấp

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp

3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác MNP cân tại M (gt)
=> MN = MP (định nghĩa)
     góc MNP = góc MPN (dấu hiệu)
- Vì NH vuông góc với MP (gt)
=> tam giác NHP vuông tại H 
- Vì PK vuông góc với MN (gt)
=> tam giác PKN vuông tại K
- Xét tam giác vuông NHP và tam giác vuông PKN, có:
    + Chung NP
    + góc HPN = góc KNP (cmt)
=> tam giác vuông NHP = tam giác vuông PKN (cạnh huyền - góc nhọn)

b) Vì tam giác vuông NHP = tam giác vuông PKN (cmt)
=> góc HNP = góc KPN (2 góc tương ứng)
=> tam giác ENP cân tại E (dấu hiệu)

c) - Vì tam giác ENP cân tại E (cmt)
=> EN = EP (định nghĩa)
- Xét tam giác MNE và tam giác MPE, có:
    + Chung ME 
    + MN = MP (cmt)
    + EN = EP (cmt)
=> tam giác MNE = tam giác MPE (ccc)
=> góc NME = góc PME (2 góc tương ứng)
=> ME là đường phân giác góc NMP (tc)

a: Xét ΔKNP vuông tại K và ΔHPN vuong tại H có

PN chung

góc KNP=góc HPN

=>ΔKNP=ΔHPN

b: Xét ΔENP có góc ENP=góc EPN

nên ΔENP cân tại E

c: Xét ΔMNE và ΔMPE có

MN=MP

NE=PE

ME chung

=>ΔMNE=ΔMPE

=>góc NME=góc PME

=>ME là phân giác của góc NMP