Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left\{1;a;b\right\}\)
Xét:
A. \(\varnothing\subset A\) (đúng)
B. \(A\subset A\) (đúng)
C. \(1\subset A\) (sai)
D. \(\left\{a,b\right\}\subset A\) (đúng)
⇒ Chọn C
a) Mệnh đề trên có dạng “Nếu P thì Q” là mệnh đề kéo theo \(P \Rightarrow Q\), với:
P: “\(B \subset A\)” và Q: “\(A \cup B = A\)”. Có thể phát biểu dưới dạng:
\(B \subset A\) là điều kiện đủ để có \(A \cup B = A\)
\(A \cup B = A\) là điều kiện cần để có \(B \subset A\)
b) Mệnh đề trên có dạng “Nếu P thì Q” là mệnh đề kéo theo \(P \Rightarrow Q\), với:
P: “Hình bình hành ABCD có hai đường chéo vuông góc với nhau” và Q: “ABCD là hình thoi”. Có thể phát biểu dưới dạng:
Hình bình hành ABCD có hai đường chéo vuông góc với nhau là điều kiện đủ để ABCD là hình thoi.
ABCD là hình thoi là điều kiện cần để có ABCD là hình bình hành có hai đường chéo vuông góc với nhau.
a) Các tập hợp con của tập hợp \(A = \{ a;b;c\} \)gồm:
+) Tập rỗng: \(\emptyset \)
+) Tập con có 1 phần tử: \(\{ a\} ,\{ b\} ,\{ c\} .\)
+) Tập con có 2 phần tử: \(\{ a;b\} ,\{ b;c\} ,\{ c;a\} .\)
+) Tập hợp A.
b) Tập hợp B thỏa mãn \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)là:
+) \(B = \{ a;b\} \)
+) \(B = \{ a;b;c\} \)
+) \(B = \{ a;b;d\} \)
+) \(B = \{ a;b;c;d\} \)
Chú ý
Mọi tập hợp A luôn có hai tập con là \(\emptyset \) và A.
a) Cách viết: \(a \subset X\) Sai vì \(\,a\) (là một phần tử của A) không phải là một tập hợp do đó ta phải dùng kí hiệu “\( \in \)” chứ không phải “\( \subset \)”.
Cách viết đúng: \(a \in X\)
b) Cách viết \(\left\{ a \right\} \subset X\) đúng, vì \(\left\{ a \right\}\)là một tập hợp, có duy nhất một phần tử là \(\,a\) và \(a \in X\)
=> Tập hợp \(\left\{ a \right\}\) là một tập con của \(X\).
c) Cách viết \(\emptyset \in X\) sai vì:
\(\emptyset \) là một tập hợp (tập hợp rỗng), không phải là một phần tử.
Cách viết đúng: \(\emptyset \subset X\)( Tập hợp rỗng là tập con của mọi tập hợp).
a) Nếu n là bội chung của 2 và 3 thì n là bội của 6, hay \(n \in B\)
Vậy mệnh đề \(A \subset B\) đúng.
b) Nếu n là bội 6 thì n vừa là bội của 2 vừa là bội của 3.
Do đó n là bội chung của 2 và 3 hay \(n \in A\).
Vậy mệnh đề \(A \subset B\) đúng.
Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
a, \(X\in\left\{a;b\right\},\left\{a;b;c\right\},\left\{a;b;d\right\},\left\{a;b;e\right\},\left\{a;c;d\right\},\left\{a;c;e\right\},\left\{a;d;e\right\},\left\{a;b;c;d\right\},\left\{a;b;c;e\right\},\left\{a;c;d;e\right\},\left\{a;b;c;d;e\right\}\)
b,
\(X=\left\{3;4;5\right\}\)
c,đề có sai hay sao ý ạ
Tham khảo:
+) Biểu diễn: \(A \subset B\)
+) Sau đó, biểu diễn: \(B \subset C\)
Quan sát biểu đồ Ven, dễ thấy \(A \subset C.\)