Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
Câu 4:
Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS
hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
7n + 10 5n + 7
<=> 5(7n + 10) <=> 7(5n + 7)
<=> 35n + 50 <=> 35n + 49
Ta thấy 35n + 50 và 35n là hai số liền nhau
Mà hai số liền nhau luôn có ƯCLN là 1 => 7n + 10 và 5n + 7 nguyên tố cùng nhau
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
Câu hỏi của Lê Thị Thanh Quỳnh - Toán lớp 6 - Học toán với OnlineMath