K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

giup minh voi 

 

9 tháng 11 2017

Ta có: \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^6}\)

\(\Rightarrow B=\frac{1-\frac{1}{3^6}}{2}\)

24 tháng 7 2016

B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101

B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101

B= 1/3 - 1/101

B=98/303

( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )

24 tháng 7 2016

a, A = 1/2x3+ 1/ 3x4 + 1/4x5 + 1/5x6 + ... + 1/99x100

    A= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + 1/5 - 1/6 + ... + 1/99 -1/100

    A= 1/2 -1/100

    A= 49 / 100

7 tháng 4 2016

. S = 1/3 - 1/7 + 1/7 - 1/11 + ... = 664/1995 
=>S = 1/3 - 1/X = 664/1995 => X = 1995 
Vậy số hạng cuối cùng sẽ = 1/(1995-4) - 1/(1995) = 4/1991x1995 
b. Dể dàng nhận thấy dạng tổng quát của các số hạn là : 4/(4n-1)[4(n+1)-1] với n=1,2,3.... 
Do số hạn cuối cùng của dãy là 4/1991x1995 nên (4n-1)[4(n+1)-1] = 1991x1995 
=> n = 498. 
Vậy dãy có 498 số hạn. 
---------------------------------- 
Chúc bạn vui!

16 tháng 10 2023

🤡

17 tháng 9 2019

a)goi  so cuoi la x;Ta co:

S= ......(De bai)

=1/3-1/7+1/7-1/11+1/11-1/15+...+...-x=664/1995

=1/3-x=664/1995

x=1/3-664/1995

x=1/1995

17 tháng 9 2019

Mẫu số là 4 mà bạn

27 tháng 4 2018

Gọi số cần tìm là \(x\), ta có :

S = \(\frac{4}{3x7}\)+  \(\frac{4}{7x11}\)\(\frac{4}{11x15}\)+ ............\(x\) = \(\frac{664}{1995}\)

 = \(\frac{4}{3}\)\(\frac{4}{7}\)\(\frac{4}{7}\) -  \(\frac{4}{11}\)+  \(\frac{4}{11}\) -  \(\frac{4}{15}\)+ ..............\(x\)\(\frac{664}{1995}\)

 = \(\frac{4}{3}\)-  \(x\)=  \(\frac{664}{1995}\)( loại các sô giống nhau )

\(x\)\(\frac{4}{3}\)-  \(\frac{664}{1995}\)

\(x\)=  \(\frac{1996}{1995}\)

17 tháng 9 2019

a.Goi so cuoi la x ta co

....................(de bai)

=1/3-1/7+1/7-1/11+1/11-1/15+...-x=664/1995

=1/3-x=664/1995

x=1/3-664/1995

x=1/1995

11 tháng 6 2018

  \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\)\(...+\frac{2}{8.9}+\frac{2}{9.10}\)

Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

      \(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

              Ta có:

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(A=\frac{1}{3}-\frac{1}{15}\)

\(A=\frac{4}{15}\)

    \(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

    \(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

     \(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

    \(B=2\left(1-\frac{1}{10}\right)\)

    \(B=2.\frac{9}{10}\)

    \(B=\frac{9}{5}\)

\(\Rightarrow A+B=\frac{4}{15}+\frac{9}{5}\)

                   \(=\frac{31}{15}\)

   Vậy biểu thức trên có giá trị là \(\frac{31}{15}\)

 

=2/5-2/7+ 2/7-2/9+2/9-2/11+2/11-2/13+2/13-2/15
=2/5-(2/7-2/7)-(2/9-2/9)-(2/11-2/11)-(2/13-2/13)-2/15

=2/5-0-0-0-0-2/15

=2/5-2/15

4/15

26 tháng 8 2021

a, Số số hạng: (100 - 1) : 1 + 1 = 100

S = (100 + 1)100 : 2 = 5050

b, Số số hạng: (200 -2) : 2 + 1 = 100

S = (200 + 2).100 : 2 = 10100

 C = 4 + 7 + 10 + 13 + .... + 301

số các số hạng của dãy số :

(301 + 4) : 3 + 1 =100 ( số hạng )

tổng là :

( 301 + 4 ) : 2 .100 =15250

=>C=15250

D = 5 + 9 + 13 + 17 + .. .+201

    = (9+201)+(13+197)+....+(5+105)

    = 210+210+...+110

    = 210.48 +110

    = 10190

26 tháng 8 2021

bài 2

a)Gọi số đó là a. Ta có:

(a-5):3+1=100

=> a=302

b)Tổng 100 số hạng đầu tiên là:

(302+5)x100:2=15350

Đ/s: a)   302;

        b)     15350

29 tháng 6 2017

Toán quá dễ. Tự túc là hạnh phúc mọi nhà bn nhé !

29 tháng 6 2017

\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)

Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\)\(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có : 

\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)

\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)

\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)

\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)

\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)

\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)

\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)

\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)

\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)