Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giảng học thử
Video không hỗ trỡ trên thiết bị của bạn!
Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh
Video không hỗ trỡ trên thiết bị của bạn!
Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn
\(S_{ABCD}=\frac{3V_{S.ABCD}}{SO}=\frac{3.16}{3}=16\left(cm^2\right)\)
\(AB=\sqrt{16}=4\left(cm\right)\)
\(H\)là trung điểm \(AB\)
suy ra \(SH\perp AB\).
\(SH=\sqrt{SO^2+OH^2}=\sqrt{3^2+2^2}=\sqrt{13}\)
\(S_{xq}=4.\frac{1}{2}SH.AB=2.\sqrt{13}.4=8\sqrt{13}\left(cm^2\right)\)
A B C D S O H 24
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp :
\(V=\frac{1}{2}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2\approx2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxp = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ= AB2 = 202 = 400 (cm2 )
⇒ Stq = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
Hướng dẫn làm bài:
a) SO2=SD2−OD2=242−(20√22)2=376SO2=SD2−OD2=242−(2022)2=376
= > SO≈19,4(cm)SO≈19,4(cm)
V=13.202.19,4≈2586,6V=13.202.19,4≈2586,6 (cm2)
b)Gọi H là trung điểm của CD.
SH2=SD2−DH2=242−(202)2=476SH2=SD2−DH2=242−(202)2=476
=>SH ≈ 21,8 (cm)
Sxq≈12.80.21,8≈872Sxq≈12.80.21,8≈872 (cm2)
Sd=AB2=202=400(cm2)Sd=AB2=202=400(cm2)
Nên Stp=Sxq+Sd=872+2.400=1672(cm)2