Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$
b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.
c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$
$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm
$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)
\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)
hay \(m=-\dfrac{7}{36}\)
\(1,\\ a,A\left(2;1\right)\in\left(d_m\right)\Leftrightarrow\dfrac{-2\left(m-1\right)+m+1}{2m-3}=1\\ \Leftrightarrow-2m+2+m+1=2m-3\\ \Leftrightarrow3m=6\Leftrightarrow m=2\\ b,\Leftrightarrow-\dfrac{m-1}{2m-3}>0\Leftrightarrow\dfrac{m-1}{2m-3}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\2m-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\2m-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< m< \dfrac{3}{2}\\ c,\left(\Delta\right):x-2y-12=0\Leftrightarrow2y=x-12\Leftrightarrow y=\dfrac{1}{2}x-6\\ \left(d_m\right)\text{//}\left(\Delta\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-m}{2m-3}=\dfrac{1}{2}\\\dfrac{m+1}{2m-3}\ne-6\end{matrix}\right.\Leftrightarrow m=\dfrac{5}{4}\)
\(2,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm}\\ \Leftrightarrow y_0=\dfrac{1-m}{2m-3}x_0+\dfrac{m+1}{2m-3}\\ \Leftrightarrow y_0\left(2m-3\right)=x_0\left(1-m\right)+m+1\\ \Leftrightarrow x_0-mx_0+m+1-2my_0-3y_0=0\\ \Leftrightarrow m\left(1-x_0-2y_0\right)+\left(x_0-3y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+2y_0=1\\x_0-3y_0=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{5}\\y_0=\dfrac{2}{5}\end{matrix}\right.\\ \Leftrightarrow M\left(\dfrac{1}{5};\dfrac{2}{5}\right)\)
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Bài 1:
a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)
b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0
hay k>2
Bài 2:
Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:
\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)
\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)
\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)
hay \(m=\dfrac{1}{3}\)