K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Áp dụng BĐT AM - GM ta có :

\(3\ge x^2+y^2+z^2\ge xy+yz+zx\)

Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :

\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+xy+yz+zx}=\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)

Vậy GTNN của P là \(\dfrac{3}{2}\) . \("="\Leftrightarrow x=y=z=1\)

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

6 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  lần lượt cho từng bộ số gồm có  \(\left[\left(1+x\right);\left(1+y\right);\left(1+z\right)\right]\)  và  \(\left[\left(\frac{1}{1+x}\right);\left(\frac{1}{1+y}\right);\left(\frac{1}{1+z}\right)\right]\) , ta có:

\(\left(1+x\right)+\left(1+y\right)+\left(1+z\right)\ge3\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)  \(\left(1\right)\)

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)  \(\left(2\right)\)

Nhân từng vế của bất đẳng thức  \(\left(1\right)\)  với bđt  \(\left(2\right)\), ta được:

\(\left[\left(1+x\right)+\left(1+y\right)+\left(1+z\right)\right]\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\ge9\)

nên  \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}=\frac{9}{3+\left(x+y+z\right)}=\frac{9}{3+3}=\frac{3}{2}\)  (do  \(x,y,z>0\)  và  \(x+y+z\le3\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{1+x=1+y=1+z}_{x+y+z=3}\)  \(\Leftrightarrow\)  \(^{x=y=z}_{x+y+z=3}\)  \(\Leftrightarrow\)  \(x=y=z=1\)

Vậy,  \(A_{min}=\frac{3}{2}\)   \(\Leftrightarrow\)  \(x=y=z=1\)

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

4 tháng 5 2019

Ta chứng minh với x,y,z > 0 thì:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (*)

\(VT\circledast=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}=3+2+2+2=9\)

Vậy (*) đúng. Dấu "=" khi a = b = c

Áp dụng ta có:

\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{1+x+1+y+1+z}=\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" khi x = y = z = 1

6 tháng 5 2019

Ta chứng minh BĐT phụ sau: \(\frac{1}{1+x}\ge-\frac{1}{4}x+\frac{3}{4}\Leftrightarrow\frac{\left(x-1\right)^2}{4\left(x+1\right)}\ge0\) (đúng với mọi x > 0)

Tương tự với hai BĐT còn lại và cộng theo vế ta được:

\(A\ge-\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\ge-\frac{1}{4}.3+\frac{9}{4}=\frac{3}{2}\)

Vậy min A = 3/2 khi x = y = z =1