K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>\(\widehat{DOC}=\widehat{DBC}\left(1\right)\)

Xét (O) có

\(\widehat{DBC}\) là góc tạo bởi tiếp tuyến BD và dây cung BC

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{DBC}=\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{DOC}=\widehat{BAC}\)

b: Ta có: DI//AB

=>\(\widehat{CID}=\widehat{CAB}\)(hai góc đồng vị)

mà \(\widehat{CAB}=\widehat{DBC}\)

và \(\widehat{DBC}=\widehat{DOC}\)

nên \(\widehat{CID}=\widehat{COD}\)

=>CIOD là tứ giác nội tiếp

c: ta có: CIOD là tứ giác nội tiếp

=>\(\widehat{OID}=\widehat{OCD}=90^0\)

=>OI\(\perp\)EF tại I

Ta có: ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

=>IE=IF

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 
4 tháng 2 2021

26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được

a: Xét ΔMBA và ΔMAC có

góc MAB=góc MCA

góc M chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MC/MB=AB^2/AC^2

b: EF//AM

AM vuông góc OA

=>EF vuông góc OA

=>góc AEF+góc OAE=90 độ

=>góc AEF+(180 độ-góc AOB)/2=90 độ

=>góc AEF+90 độ-góc ACB=90 độ

=>gócAEF=góc ACB

=>góc BEF+góc BCF=180 độ

=>BEFC nội tiếp

=>góc BEC=góc BFC=90 độ

Xét ΔABC có

BF,CE là đường cao

BF căt CE tại H

=>H là trực tâm

=>AH vuông góc CB tại D