Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABE và tam giác ACF có:
\(\widehat{AFC}=\widehat{AEB}\)
\(\widehat{A}\) chung
=> tam giác ABE và tam giác ACF đồng dạng
\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)
đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc FBH chung
=>ΔBFH đồng dạng với ΔBEA
=>BF/BE=BH/BA
=>BF*BA=BH*BE
d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng với ΔCFA
=>CE/CF=CH/CA
=>CE*CA=CF*CH
b) Xét tứ giác BFHD có
\(\widehat{BFH}+\widehat{BDH}=180^0\)
nên BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{FBH}=\widehat{FDH}\)(hai góc nội tiếp cùng chắn cung FH)
hay \(\widehat{ABE}=\widehat{FDH}\)(1)
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
nên CDHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{HDE}=\widehat{ECH}\)(Hai góc nội tiếp cùng chắn cung EH)
hay \(\widehat{HDE}=\widehat{ACF}\)(2)
Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{FDH}=\widehat{EDH}\)
hay DH là tia phân giác của \(\widehat{EDF}\)
Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!
d) Vì BE vuông AC, CF vuông AB(gt)
Mà BE, CF cắt nhau tại H
=> H là trực tâm của tam giác ABC
Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD (1)
Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE (2)
Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF (3)
Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc
=> HD/AD + HE/BE + HF/CF = Sabc/Sabc
=> HD/AD + HE/BE + HF/CF = 1 (Đpcm)
câu c nè
Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC
Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH
=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)
vậy\(\frac{BD}{DH}=\frac{3}{4}\)